Model save
Browse files- README.md +21 -21
- model.safetensors +1 -1
- modeling_parallel_gpt2.py +222 -1
README.md
CHANGED
|
@@ -17,10 +17,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 17 |
|
| 18 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
| 19 |
It achieves the following results on the evaluation set:
|
| 20 |
-
- Loss: 3.
|
| 21 |
-
- Accuracy: 0.
|
| 22 |
-
- Perplexity: 24.
|
| 23 |
-
- Bleu: 0.
|
| 24 |
|
| 25 |
## Model description
|
| 26 |
|
|
@@ -52,23 +52,23 @@ The following hyperparameters were used during training:
|
|
| 52 |
|
| 53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | Bleu |
|
| 54 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|
|
| 55 |
-
| 6.
|
| 56 |
-
| 5.
|
| 57 |
-
| 4.
|
| 58 |
-
| 3.
|
| 59 |
-
| 3.
|
| 60 |
-
| 3.
|
| 61 |
-
| 3.
|
| 62 |
-
| 3.
|
| 63 |
-
| 3.
|
| 64 |
-
| 3.
|
| 65 |
-
| 3.
|
| 66 |
-
| 3.
|
| 67 |
-
| 3.
|
| 68 |
-
| 3.
|
| 69 |
-
| 3.
|
| 70 |
-
| 3.
|
| 71 |
-
| 3.
|
| 72 |
|
| 73 |
|
| 74 |
### Framework versions
|
|
|
|
| 17 |
|
| 18 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
| 19 |
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 3.1864
|
| 21 |
+
- Accuracy: 0.4195
|
| 22 |
+
- Perplexity: 24.2005
|
| 23 |
+
- Bleu: 0.1476
|
| 24 |
|
| 25 |
## Model description
|
| 26 |
|
|
|
|
| 52 |
|
| 53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | Bleu |
|
| 54 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|
|
| 55 |
+
| 6.0443 | 0.2806 | 500 | 5.9164 | 0.1901 | 371.0844 | 0.0350 |
|
| 56 |
+
| 5.0429 | 0.5612 | 1000 | 4.8947 | 0.2638 | 133.5839 | 0.0647 |
|
| 57 |
+
| 4.3531 | 0.8418 | 1500 | 4.2426 | 0.3176 | 69.5891 | 0.0829 |
|
| 58 |
+
| 3.9503 | 1.1223 | 2000 | 3.8874 | 0.3517 | 48.7842 | 0.1050 |
|
| 59 |
+
| 3.7613 | 1.4029 | 2500 | 3.7124 | 0.3672 | 40.9504 | 0.1211 |
|
| 60 |
+
| 3.6548 | 1.6835 | 3000 | 3.5911 | 0.3780 | 36.2753 | 0.1308 |
|
| 61 |
+
| 3.5531 | 1.9641 | 3500 | 3.5068 | 0.3860 | 33.3428 | 0.1340 |
|
| 62 |
+
| 3.4344 | 2.2447 | 4000 | 3.4411 | 0.3920 | 31.2224 | 0.1356 |
|
| 63 |
+
| 3.3743 | 2.5253 | 4500 | 3.3875 | 0.3972 | 29.5917 | 0.1389 |
|
| 64 |
+
| 3.3443 | 2.8058 | 5000 | 3.3429 | 0.4016 | 28.3017 | 0.1373 |
|
| 65 |
+
| 3.225 | 3.0864 | 5500 | 3.3080 | 0.4055 | 27.3310 | 0.1419 |
|
| 66 |
+
| 3.2185 | 3.3670 | 6000 | 3.2781 | 0.4090 | 26.5258 | 0.1463 |
|
| 67 |
+
| 3.1972 | 3.6476 | 6500 | 3.2500 | 0.4121 | 25.7899 | 0.1453 |
|
| 68 |
+
| 3.1719 | 3.9282 | 7000 | 3.2268 | 0.4144 | 25.1990 | 0.1465 |
|
| 69 |
+
| 3.1052 | 4.2088 | 7500 | 3.2109 | 0.4162 | 24.8018 | 0.1472 |
|
| 70 |
+
| 3.0672 | 4.4893 | 8000 | 3.1978 | 0.4179 | 24.4788 | 0.1469 |
|
| 71 |
+
| 3.0773 | 4.7699 | 8500 | 3.1864 | 0.4195 | 24.2005 | 0.1476 |
|
| 72 |
|
| 73 |
|
| 74 |
### Framework versions
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1419322880
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:12bcf19c73feb91c89b081e737e677739d1c08d1066a1832f28d0d205e67e3f6
|
| 3 |
size 1419322880
|
modeling_parallel_gpt2.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
"""PyTorch OpenAI GPT-2 model modified to support parallel-gpt2, code copied from Huggingface"""
|
| 3 |
|
| 4 |
|
|
@@ -274,6 +273,7 @@ class ParallelGPT2Model(ParallelGPT2PretrainedModel):
|
|
| 274 |
use_cache,
|
| 275 |
output_attentions,
|
| 276 |
)
|
|
|
|
| 277 |
else:
|
| 278 |
outputs_left = block_left(
|
| 279 |
hidden_states,
|
|
@@ -295,6 +295,7 @@ class ParallelGPT2Model(ParallelGPT2PretrainedModel):
|
|
| 295 |
use_cache=use_cache,
|
| 296 |
output_attentions=output_attentions,
|
| 297 |
)
|
|
|
|
| 298 |
if self.config.bottleneck_method=="concat":
|
| 299 |
hidden_states = torch.cat((outputs_left[0], outputs_right[0]), dim=-1)
|
| 300 |
hidden_states = self.bottleneck(hidden_states)
|
|
@@ -341,6 +342,226 @@ class ParallelGPT2Model(ParallelGPT2PretrainedModel):
|
|
| 341 |
)
|
| 342 |
|
| 343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
class ParallelGPT2LMHeadModel(ParallelGPT2PretrainedModel, GenerationMixin):
|
| 345 |
_tied_weights_keys = ["lm_head.weight"]
|
| 346 |
|
|
|
|
|
|
|
| 1 |
"""PyTorch OpenAI GPT-2 model modified to support parallel-gpt2, code copied from Huggingface"""
|
| 2 |
|
| 3 |
|
|
|
|
| 273 |
use_cache,
|
| 274 |
output_attentions,
|
| 275 |
)
|
| 276 |
+
# outputs_right = outputs_left
|
| 277 |
else:
|
| 278 |
outputs_left = block_left(
|
| 279 |
hidden_states,
|
|
|
|
| 295 |
use_cache=use_cache,
|
| 296 |
output_attentions=output_attentions,
|
| 297 |
)
|
| 298 |
+
# outputs_right = outputs_left
|
| 299 |
if self.config.bottleneck_method=="concat":
|
| 300 |
hidden_states = torch.cat((outputs_left[0], outputs_right[0]), dim=-1)
|
| 301 |
hidden_states = self.bottleneck(hidden_states)
|
|
|
|
| 342 |
)
|
| 343 |
|
| 344 |
|
| 345 |
+
|
| 346 |
+
def forward_test(
|
| 347 |
+
self,
|
| 348 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 349 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 350 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 351 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 352 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 353 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 354 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 355 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 356 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 357 |
+
use_cache: Optional[bool] = None,
|
| 358 |
+
output_attentions: Optional[bool] = None,
|
| 359 |
+
output_hidden_states: Optional[bool] = None,
|
| 360 |
+
return_dict: Optional[bool] = None,
|
| 361 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
| 362 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 363 |
+
output_hidden_states = (
|
| 364 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 365 |
+
)
|
| 366 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 367 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 368 |
+
|
| 369 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 370 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 371 |
+
elif input_ids is not None:
|
| 372 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
| 373 |
+
input_shape = input_ids.size()
|
| 374 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 375 |
+
batch_size = input_ids.shape[0]
|
| 376 |
+
elif inputs_embeds is not None:
|
| 377 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 378 |
+
batch_size = inputs_embeds.shape[0]
|
| 379 |
+
else:
|
| 380 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 381 |
+
|
| 382 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 383 |
+
|
| 384 |
+
if token_type_ids is not None:
|
| 385 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 386 |
+
|
| 387 |
+
if past_key_values is None:
|
| 388 |
+
past_length = 0
|
| 389 |
+
past_key_values = tuple([None] * len(self.h))
|
| 390 |
+
else:
|
| 391 |
+
past_length = past_key_values[0][0].size(-2)
|
| 392 |
+
if position_ids is None:
|
| 393 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
| 394 |
+
position_ids = position_ids.unsqueeze(0)
|
| 395 |
+
|
| 396 |
+
if inputs_embeds is None:
|
| 397 |
+
inputs_embeds = self.wte(input_ids)
|
| 398 |
+
position_embeds = self.wpe(position_ids)
|
| 399 |
+
hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
|
| 400 |
+
|
| 401 |
+
# Attention mask.
|
| 402 |
+
_use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False and head_mask is None
|
| 403 |
+
attention_mask = attention_mask.view(batch_size, -1) if attention_mask is not None else None
|
| 404 |
+
if self._attn_implementation == "flash_attention_2":
|
| 405 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 406 |
+
elif _use_sdpa:
|
| 407 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
| 408 |
+
attention_mask=attention_mask,
|
| 409 |
+
input_shape=(batch_size, input_shape[-1]),
|
| 410 |
+
inputs_embeds=inputs_embeds,
|
| 411 |
+
past_key_values_length=past_length,
|
| 412 |
+
)
|
| 413 |
+
else:
|
| 414 |
+
if attention_mask is not None:
|
| 415 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
| 416 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
| 417 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
| 418 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
| 419 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
| 420 |
+
attention_mask = attention_mask[:, None, None, :]
|
| 421 |
+
|
| 422 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 423 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
| 424 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
| 425 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
| 426 |
+
# effectively the same as removing these entirely.
|
| 427 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 428 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
| 429 |
+
|
| 430 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 431 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 432 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
| 433 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 434 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 435 |
+
if encoder_attention_mask is None:
|
| 436 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 437 |
+
if _use_sdpa:
|
| 438 |
+
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
| 439 |
+
mask=encoder_attention_mask, dtype=inputs_embeds.dtype, tgt_len=input_shape[-1]
|
| 440 |
+
)
|
| 441 |
+
elif not self._attn_implementation == "flash_attention_2":
|
| 442 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 443 |
+
else:
|
| 444 |
+
encoder_attention_mask = None
|
| 445 |
+
|
| 446 |
+
# Prepare head mask if needed
|
| 447 |
+
# 1.0 in head_mask indicate we keep the head
|
| 448 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 449 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
| 450 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
| 451 |
+
|
| 452 |
+
if token_type_ids is not None:
|
| 453 |
+
token_type_embeds = self.wte(token_type_ids)
|
| 454 |
+
hidden_states = hidden_states + token_type_embeds
|
| 455 |
+
|
| 456 |
+
hidden_states = self.drop(hidden_states)
|
| 457 |
+
|
| 458 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
| 459 |
+
|
| 460 |
+
if self.gradient_checkpointing and self.training:
|
| 461 |
+
if use_cache:
|
| 462 |
+
logger.warning_once(
|
| 463 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 464 |
+
)
|
| 465 |
+
use_cache = False
|
| 466 |
+
|
| 467 |
+
presents = () if use_cache else None
|
| 468 |
+
self_attentions = () if output_attentions else None
|
| 469 |
+
cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 470 |
+
all_hidden_states = () if output_hidden_states else None
|
| 471 |
+
for i in range(0, len(self.h), 2):
|
| 472 |
+
block_left, layer_past_left = self.h[i], past_key_values[i]
|
| 473 |
+
block_right, layer_past_right = self.h[i+1], past_key_values[i+1]
|
| 474 |
+
# Model parallel
|
| 475 |
+
if self.model_parallel:
|
| 476 |
+
torch.cuda.set_device(hidden_states.device)
|
| 477 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
| 478 |
+
if layer_past is not None:
|
| 479 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
| 480 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
| 481 |
+
if attention_mask is not None:
|
| 482 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 483 |
+
if isinstance(head_mask, torch.Tensor):
|
| 484 |
+
head_mask = head_mask.to(hidden_states.device)
|
| 485 |
+
if output_hidden_states:
|
| 486 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 487 |
+
import copy
|
| 488 |
+
avg_block = copy.deepcopy(block_left)
|
| 489 |
+
state_left = block_left.state_dict()
|
| 490 |
+
state_right = block_right.state_dict()
|
| 491 |
+
new_state = {k: torch.min(state_left[k], state_right[k]) for k in state_left}
|
| 492 |
+
# new_state = {k: (state_left[k] + state_right[k]) for k in state_left}
|
| 493 |
+
avg_block.load_state_dict(new_state)
|
| 494 |
+
|
| 495 |
+
if self.gradient_checkpointing and self.training:
|
| 496 |
+
outputs = self._gradient_checkpointing_func(
|
| 497 |
+
avg_block.__call__,
|
| 498 |
+
hidden_states,
|
| 499 |
+
None,
|
| 500 |
+
attention_mask,
|
| 501 |
+
head_mask[i],
|
| 502 |
+
encoder_hidden_states,
|
| 503 |
+
encoder_attention_mask,
|
| 504 |
+
use_cache,
|
| 505 |
+
output_attentions,
|
| 506 |
+
)
|
| 507 |
+
else:
|
| 508 |
+
outputs = avg_block(
|
| 509 |
+
hidden_states,
|
| 510 |
+
layer_past=layer_past_left,
|
| 511 |
+
attention_mask=attention_mask,
|
| 512 |
+
head_mask=head_mask[i],
|
| 513 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 514 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 515 |
+
use_cache=use_cache,
|
| 516 |
+
output_attentions=output_attentions,
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
# outputs_right = outputs_left
|
| 520 |
+
if self.config.bottleneck_method=="concat":
|
| 521 |
+
hidden_states = torch.cat((outputs[0], outputs[0]), dim=-1)
|
| 522 |
+
hidden_states = self.bottleneck(hidden_states)
|
| 523 |
+
elif self.config.bottleneck_method=="add":
|
| 524 |
+
hidden_states = (outputs[0] + outputs[0]) ## taking add
|
| 525 |
+
elif self.config.bottleneck_method=="mean":
|
| 526 |
+
hidden_states = (outputs[0] + outputs[0]) / 2 ## taking mean
|
| 527 |
+
if use_cache is True:
|
| 528 |
+
presents = presents + (outputs[1],)
|
| 529 |
+
|
| 530 |
+
if output_attentions:
|
| 531 |
+
self_attentions = self_attentions + (outputs[2 if use_cache else 1],)
|
| 532 |
+
if self.config.add_cross_attention:
|
| 533 |
+
cross_attentions = cross_attentions + (outputs[3 if use_cache else 2],)
|
| 534 |
+
|
| 535 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 536 |
+
if self.model_parallel:
|
| 537 |
+
for k, v in self.device_map.items():
|
| 538 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 539 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 540 |
+
|
| 541 |
+
hidden_states = self.ln_f(hidden_states)
|
| 542 |
+
|
| 543 |
+
hidden_states = hidden_states.view(output_shape)
|
| 544 |
+
# Add last hidden state
|
| 545 |
+
if output_hidden_states:
|
| 546 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 547 |
+
|
| 548 |
+
if not return_dict:
|
| 549 |
+
return tuple(
|
| 550 |
+
v
|
| 551 |
+
for v in [hidden_states, presents, all_hidden_states, self_attentions, cross_attentions]
|
| 552 |
+
if v is not None
|
| 553 |
+
)
|
| 554 |
+
|
| 555 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 556 |
+
last_hidden_state=hidden_states,
|
| 557 |
+
past_key_values=presents,
|
| 558 |
+
hidden_states=all_hidden_states,
|
| 559 |
+
attentions=self_attentions,
|
| 560 |
+
cross_attentions=cross_attentions,
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
|
| 565 |
class ParallelGPT2LMHeadModel(ParallelGPT2PretrainedModel, GenerationMixin):
|
| 566 |
_tied_weights_keys = ["lm_head.weight"]
|
| 567 |
|