File size: 4,479 Bytes
9b295f1
 
 
 
092b6c5
 
 
9b295f1
 
 
 
 
 
 
 
 
 
 
092b6c5
 
 
 
 
9b295f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5404364
 
9b295f1
 
 
 
 
 
 
 
092b6c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b295f1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
- bleu
model-index:
- name: duo-predict-gpt2-medium-wikitext
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# duo-predict-gpt2-medium-wikitext

This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5713
- Accuracy: 0.0073
- Perplexity: 4.8128
- Bleu: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | Perplexity | Bleu   |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:----------:|:------:|
| 7.6316        | 0.1403 | 500   | 3.7041          | 0.0073   | 40.6115    | 1.0    |
| 6.4879        | 0.2807 | 1000  | 3.1196          | 0.0073   | 22.6384    | 0.9995 |
| 5.3189        | 0.4210 | 1500  | 2.5976          | 0.0073   | 13.4321    | 1.0    |
| 4.7557        | 0.5613 | 2000  | 2.3369          | 0.0073   | 10.3487    | 1.0    |
| 4.351         | 0.7017 | 2500  | 2.1234          | 0.0073   | 8.3592     | 1.0    |
| 4.0701        | 0.8420 | 3000  | 2.0021          | 0.0073   | 7.4045     | 1.0    |
| 3.9112        | 0.9823 | 3500  | 1.9280          | 0.0073   | 6.8756     | 1.0    |
| 3.7775        | 1.1226 | 4000  | 1.8769          | 0.0073   | 6.5331     | 1.0    |
| 3.703         | 1.2630 | 4500  | 1.8369          | 0.0073   | 6.2768     | 1.0    |
| 3.6443        | 1.4033 | 5000  | 1.8061          | 0.0073   | 6.0866     | 1.0    |
| 3.5659        | 1.5436 | 5500  | 1.7789          | 0.0073   | 5.9232     | 1.0    |
| 3.5303        | 1.6840 | 6000  | 1.7552          | 0.0073   | 5.7848     | 1.0    |
| 3.4926        | 1.8243 | 6500  | 1.7348          | 0.0073   | 5.6676     | 1.0    |
| 3.464         | 1.9646 | 7000  | 1.7167          | 0.0073   | 5.5660     | 1.0    |
| 3.3432        | 2.1050 | 7500  | 1.7016          | 0.0073   | 5.4826     | 1.0    |
| 3.3215        | 2.2453 | 8000  | 1.6883          | 0.0073   | 5.4104     | 1.0    |
| 3.3122        | 2.3856 | 8500  | 1.6768          | 0.0073   | 5.3483     | 1.0    |
| 3.2836        | 2.5260 | 9000  | 1.6651          | 0.0073   | 5.2860     | 1.0    |
| 3.2582        | 2.6663 | 9500  | 1.6541          | 0.0073   | 5.2281     | 1.0    |
| 3.2387        | 2.8066 | 10000 | 1.6434          | 0.0073   | 5.1726     | 1.0    |
| 3.223         | 2.9470 | 10500 | 1.6338          | 0.0073   | 5.1232     | 1.0    |
| 3.126         | 3.0873 | 11000 | 1.6289          | 0.0073   | 5.0984     | 1.0    |
| 3.1149        | 3.2276 | 11500 | 1.6212          | 0.0073   | 5.0590     | 1.0    |
| 3.1048        | 3.3679 | 12000 | 1.6149          | 0.0073   | 5.0276     | 1.0    |
| 3.0966        | 3.5083 | 12500 | 1.6074          | 0.0073   | 4.9897     | 1.0    |
| 3.0904        | 3.6486 | 13000 | 1.6013          | 0.0073   | 4.9597     | 1.0    |
| 3.0979        | 3.7889 | 13500 | 1.5959          | 0.0073   | 4.9326     | 1.0    |
| 3.0772        | 3.9293 | 14000 | 1.5907          | 0.0073   | 4.9074     | 1.0    |
| 2.9795        | 4.0696 | 14500 | 1.5887          | 0.0073   | 4.8975     | 1.0    |
| 2.9807        | 4.2099 | 15000 | 1.5847          | 0.0073   | 4.8779     | 1.0    |
| 2.976         | 4.3503 | 15500 | 1.5817          | 0.0073   | 4.8634     | 1.0    |
| 2.9795        | 4.4906 | 16000 | 1.5778          | 0.0073   | 4.8444     | 1.0    |
| 2.9594        | 4.6309 | 16500 | 1.5754          | 0.0073   | 4.8328     | 1.0    |
| 2.9698        | 4.7713 | 17000 | 1.5731          | 0.0073   | 4.8217     | 1.0    |
| 2.9604        | 4.9116 | 17500 | 1.5713          | 0.0073   | 4.8128     | 1.0    |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0