Alex Birch
commited on
gradient checkpointing for multi-query attention
Browse files- attention.py +64 -5
attention.py
CHANGED
|
@@ -316,7 +316,7 @@ class MultiheadAttention(nn.Module, Attn):
|
|
| 316 |
False, # multiquery
|
| 317 |
)
|
| 318 |
return custom_forward
|
| 319 |
-
|
| 320 |
create_custom_forward(self.attn_fn),
|
| 321 |
query,
|
| 322 |
key,
|
|
@@ -332,7 +332,7 @@ class MultiheadAttention(nn.Module, Attn):
|
|
| 332 |
**ckpt_kwargs,
|
| 333 |
)
|
| 334 |
else:
|
| 335 |
-
|
| 336 |
query,
|
| 337 |
key,
|
| 338 |
value,
|
|
@@ -345,7 +345,7 @@ class MultiheadAttention(nn.Module, Attn):
|
|
| 345 |
training=self.training,
|
| 346 |
needs_weights=needs_weights,
|
| 347 |
)
|
| 348 |
-
context, attn_weights =
|
| 349 |
return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
|
| 350 |
|
| 351 |
class MultiQueryAttention(nn.Module, Attn):
|
|
@@ -413,8 +413,67 @@ class MultiQueryAttention(nn.Module, Attn):
|
|
| 413 |
past_key_value = PastKeyValue(key, value)
|
| 414 |
if attn_bias is not None:
|
| 415 |
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
| 416 |
-
|
| 417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
|
| 419 |
|
| 420 |
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
|
|
|
| 316 |
False, # multiquery
|
| 317 |
)
|
| 318 |
return custom_forward
|
| 319 |
+
attn_fn_out: AttnFnOutput = checkpoint(
|
| 320 |
create_custom_forward(self.attn_fn),
|
| 321 |
query,
|
| 322 |
key,
|
|
|
|
| 332 |
**ckpt_kwargs,
|
| 333 |
)
|
| 334 |
else:
|
| 335 |
+
attn_fn_out: AttnFnOutput = self.attn_fn(
|
| 336 |
query,
|
| 337 |
key,
|
| 338 |
value,
|
|
|
|
| 345 |
training=self.training,
|
| 346 |
needs_weights=needs_weights,
|
| 347 |
)
|
| 348 |
+
context, attn_weights = attn_fn_out
|
| 349 |
return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
|
| 350 |
|
| 351 |
class MultiQueryAttention(nn.Module, Attn):
|
|
|
|
| 413 |
past_key_value = PastKeyValue(key, value)
|
| 414 |
if attn_bias is not None:
|
| 415 |
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
| 416 |
+
if self.training and self.gradient_checkpointing:
|
| 417 |
+
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
|
| 418 |
+
def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed:
|
| 419 |
+
def custom_forward(
|
| 420 |
+
query: torch.Tensor,
|
| 421 |
+
key: torch.Tensor,
|
| 422 |
+
value: torch.Tensor,
|
| 423 |
+
n_heads: int,
|
| 424 |
+
softmax_scale: Optional[float],
|
| 425 |
+
attn_bias: Optional[torch.Tensor],
|
| 426 |
+
key_padding_mask: Optional[torch.ByteTensor],
|
| 427 |
+
is_causal: bool,
|
| 428 |
+
dropout_p: float,
|
| 429 |
+
training: bool,
|
| 430 |
+
needs_weights: bool,
|
| 431 |
+
):
|
| 432 |
+
return attn_fn(
|
| 433 |
+
query,
|
| 434 |
+
key,
|
| 435 |
+
value,
|
| 436 |
+
n_heads,
|
| 437 |
+
softmax_scale,
|
| 438 |
+
attn_bias,
|
| 439 |
+
key_padding_mask,
|
| 440 |
+
is_causal,
|
| 441 |
+
dropout_p,
|
| 442 |
+
training,
|
| 443 |
+
needs_weights,
|
| 444 |
+
True, # multiquery
|
| 445 |
+
)
|
| 446 |
+
return custom_forward
|
| 447 |
+
attn_fn_out: AttnFnOutput = checkpoint(
|
| 448 |
+
create_custom_forward(self.attn_fn),
|
| 449 |
+
query,
|
| 450 |
+
key,
|
| 451 |
+
value,
|
| 452 |
+
self.n_heads,
|
| 453 |
+
self.softmax_scale,
|
| 454 |
+
attn_bias,
|
| 455 |
+
key_padding_mask,
|
| 456 |
+
is_causal,
|
| 457 |
+
self.attn_dropout_p,
|
| 458 |
+
self.training,
|
| 459 |
+
needs_weights,
|
| 460 |
+
**ckpt_kwargs,
|
| 461 |
+
)
|
| 462 |
+
else:
|
| 463 |
+
attn_fn_out: AttnFnOutput = self.attn_fn(
|
| 464 |
+
query,
|
| 465 |
+
key,
|
| 466 |
+
value,
|
| 467 |
+
self.n_heads,
|
| 468 |
+
softmax_scale=self.softmax_scale,
|
| 469 |
+
attn_bias=attn_bias,
|
| 470 |
+
key_padding_mask=key_padding_mask,
|
| 471 |
+
is_causal=is_causal,
|
| 472 |
+
dropout_p=self.attn_dropout_p,
|
| 473 |
+
training=self.training,
|
| 474 |
+
needs_weights=needs_weights,
|
| 475 |
+
)
|
| 476 |
+
context, attn_weights = attn_fn_out
|
| 477 |
return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
|
| 478 |
|
| 479 |
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|