""" Batch processing example for the Custom OCR Model. """ from transformers import AutoModel from PIL import Image import os from pathlib import Path def batch_ocr_example(image_directory: str): """Process multiple images in batch.""" # Load model model = AutoModel.from_pretrained("your-username/your-model-name", trust_remote_code=True) # Get all image files image_dir = Path(image_directory) image_files = list(image_dir.glob("*.jpg")) + list(image_dir.glob("*.png")) print(f"Processing {len(image_files)} images...") results = [] for image_file in image_files: print(f"Processing: {image_file.name}") # Load image image = Image.open(image_file) # Extract text result = model.generate_ocr_text(image, use_native=True) results.append({ "filename": image_file.name, "text": result["text"], "confidence": result["confidence"] }) print(f" Text: {result['text'][:50]}...") print(f" Confidence: {result['confidence']:.3f}") return results if __name__ == "__main__": import sys if len(sys.argv) > 1: results = batch_ocr_example(sys.argv[1]) print(f"\nProcessed {len(results)} images successfully!") else: print("Usage: python batch_processing.py ")