Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -77,7 +77,8 @@ print(scores) # [0.00027803096387751553, 0.9948403768236574]
|
|
| 77 |
|
| 78 |
```python
|
| 79 |
from FlagEmbedding import FlagLLMReranker
|
| 80 |
-
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma',
|
|
|
|
| 81 |
|
| 82 |
score = reranker.compute_score(['query', 'passage'])
|
| 83 |
print(score)
|
|
@@ -90,7 +91,8 @@ print(scores)
|
|
| 90 |
|
| 91 |
```python
|
| 92 |
from FlagEmbedding import LayerWiseFlagLLMReranker
|
| 93 |
-
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise',
|
|
|
|
| 94 |
|
| 95 |
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
|
| 96 |
print(score)
|
|
@@ -230,7 +232,7 @@ def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
|
|
| 230 |
return_tensors='pt',
|
| 231 |
)
|
| 232 |
|
| 233 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True
|
| 234 |
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
| 235 |
model = model.to('cuda')
|
| 236 |
model.eval()
|
|
|
|
| 77 |
|
| 78 |
```python
|
| 79 |
from FlagEmbedding import FlagLLMReranker
|
| 80 |
+
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
| 81 |
+
# reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
|
| 82 |
|
| 83 |
score = reranker.compute_score(['query', 'passage'])
|
| 84 |
print(score)
|
|
|
|
| 91 |
|
| 92 |
```python
|
| 93 |
from FlagEmbedding import LayerWiseFlagLLMReranker
|
| 94 |
+
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
| 95 |
+
# reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
|
| 96 |
|
| 97 |
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
|
| 98 |
print(score)
|
|
|
|
| 232 |
return_tensors='pt',
|
| 233 |
)
|
| 234 |
|
| 235 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True)
|
| 236 |
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
| 237 |
model = model.to('cuda')
|
| 238 |
model.eval()
|