Upload folder using huggingface_hub
Browse files- tokenization_qwen.py +250 -0
- tokenizer_config.json +1 -1
tokenization_qwen.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copied from https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct/blob/main/tokenization_qwen.py
|
| 3 |
+
"""
|
| 4 |
+
from typing import List, Optional
|
| 5 |
+
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer as OriginalQwen2Tokenizer
|
| 6 |
+
from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast as OriginalQwen2TokenizerFast
|
| 7 |
+
from tokenizers import processors
|
| 8 |
+
|
| 9 |
+
VOCAB_FILES_NAMES = {
|
| 10 |
+
"vocab_file": "vocab.json",
|
| 11 |
+
"merges_file": "merges.txt",
|
| 12 |
+
"tokenizer_file": "tokenizer.json",
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
class Qwen2Tokenizer(OriginalQwen2Tokenizer):
|
| 16 |
+
"""
|
| 17 |
+
Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 18 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
| 19 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
| 20 |
+
```python
|
| 21 |
+
>>> from transformers import Qwen2Tokenizer
|
| 22 |
+
>>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
|
| 23 |
+
>>> tokenizer("Hello world")["input_ids"]
|
| 24 |
+
[9707, 1879]
|
| 25 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
| 26 |
+
[21927, 1879]
|
| 27 |
+
```
|
| 28 |
+
This is expected.
|
| 29 |
+
You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
|
| 30 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 31 |
+
this superclass for more information regarding those methods.
|
| 32 |
+
Args:
|
| 33 |
+
vocab_file (`str`):
|
| 34 |
+
Path to the vocabulary file.
|
| 35 |
+
merges_file (`str`):
|
| 36 |
+
Path to the merges file.
|
| 37 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
| 38 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
| 39 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
| 40 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 41 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 42 |
+
token instead.
|
| 43 |
+
bos_token (`str`, *optional*):
|
| 44 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
| 45 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 46 |
+
The end of sequence token.
|
| 47 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 48 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 49 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
| 50 |
+
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
| 51 |
+
tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
|
| 52 |
+
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 53 |
+
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
| 54 |
+
to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
|
| 55 |
+
['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
|
| 56 |
+
'|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
| 57 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
| 58 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def __init__(
|
| 62 |
+
self,
|
| 63 |
+
vocab_file,
|
| 64 |
+
merges_file,
|
| 65 |
+
errors="replace",
|
| 66 |
+
unk_token="<|endoftext|>",
|
| 67 |
+
bos_token=None,
|
| 68 |
+
eos_token="<|endoftext|>",
|
| 69 |
+
pad_token="<|endoftext|>",
|
| 70 |
+
clean_up_tokenization_spaces=False,
|
| 71 |
+
split_special_tokens=False,
|
| 72 |
+
add_eos_token=False,
|
| 73 |
+
**kwargs,
|
| 74 |
+
):
|
| 75 |
+
# The add_eos_token code was inspired by the LlamaTokenizer
|
| 76 |
+
self.add_eos_token = add_eos_token
|
| 77 |
+
|
| 78 |
+
super().__init__(
|
| 79 |
+
vocab_file=vocab_file,
|
| 80 |
+
merges_file=merges_file,
|
| 81 |
+
errors=errors,
|
| 82 |
+
unk_token=unk_token,
|
| 83 |
+
bos_token=bos_token,
|
| 84 |
+
eos_token=eos_token,
|
| 85 |
+
pad_token=pad_token,
|
| 86 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 87 |
+
split_special_tokens=split_special_tokens,
|
| 88 |
+
add_eos_token=add_eos_token,
|
| 89 |
+
**kwargs,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 93 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 94 |
+
|
| 95 |
+
output = token_ids_0 + eos_token_id
|
| 96 |
+
|
| 97 |
+
if token_ids_1 is not None:
|
| 98 |
+
output = output + token_ids_1 + eos_token_id
|
| 99 |
+
|
| 100 |
+
return output
|
| 101 |
+
|
| 102 |
+
def get_special_tokens_mask(
|
| 103 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 104 |
+
) -> List[int]:
|
| 105 |
+
"""
|
| 106 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 107 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 108 |
+
Args:
|
| 109 |
+
token_ids_0 (`List[int]`):
|
| 110 |
+
List of IDs.
|
| 111 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 112 |
+
Optional second list of IDs for sequence pairs.
|
| 113 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 114 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 115 |
+
Returns:
|
| 116 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 117 |
+
"""
|
| 118 |
+
if already_has_special_tokens:
|
| 119 |
+
return super().get_special_tokens_mask(
|
| 120 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
eos_token_id = [1] if self.add_eos_token else []
|
| 124 |
+
|
| 125 |
+
if token_ids_1 is None:
|
| 126 |
+
return ([0] * len(token_ids_0)) + eos_token_id
|
| 127 |
+
return (
|
| 128 |
+
([0] * len(token_ids_0))
|
| 129 |
+
+ eos_token_id
|
| 130 |
+
+ ([0] * len(token_ids_1))
|
| 131 |
+
+ eos_token_id
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
def create_token_type_ids_from_sequences(
|
| 135 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 136 |
+
) -> List[int]:
|
| 137 |
+
"""
|
| 138 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
| 139 |
+
sequence pair mask has the following format:
|
| 140 |
+
```
|
| 141 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
| 142 |
+
| first sequence | second sequence |
|
| 143 |
+
```
|
| 144 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
| 145 |
+
Args:
|
| 146 |
+
token_ids_0 (`List[int]`):
|
| 147 |
+
List of ids.
|
| 148 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 149 |
+
Optional second list of IDs for sequence pairs.
|
| 150 |
+
Returns:
|
| 151 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
| 152 |
+
"""
|
| 153 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 154 |
+
|
| 155 |
+
output = [0] * len(token_ids_0 + eos_token_id)
|
| 156 |
+
|
| 157 |
+
if token_ids_1 is not None:
|
| 158 |
+
output += [1] * len(token_ids_1 + eos_token_id)
|
| 159 |
+
|
| 160 |
+
return output
|
| 161 |
+
|
| 162 |
+
class Qwen2TokenizerFast(OriginalQwen2TokenizerFast):
|
| 163 |
+
"""
|
| 164 |
+
Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
| 165 |
+
Byte-Pair-Encoding.
|
| 166 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
| 167 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
| 168 |
+
```python
|
| 169 |
+
>>> from transformers import Qwen2TokenizerFast
|
| 170 |
+
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
|
| 171 |
+
>>> tokenizer("Hello world")["input_ids"]
|
| 172 |
+
[9707, 1879]
|
| 173 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
| 174 |
+
[21927, 1879]
|
| 175 |
+
```
|
| 176 |
+
This is expected.
|
| 177 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
| 178 |
+
refer to this superclass for more information regarding those methods.
|
| 179 |
+
Args:
|
| 180 |
+
vocab_file (`str`, *optional*):
|
| 181 |
+
Path to the vocabulary file.
|
| 182 |
+
merges_file (`str`, *optional*):
|
| 183 |
+
Path to the merges file.
|
| 184 |
+
tokenizer_file (`str`, *optional*):
|
| 185 |
+
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
| 186 |
+
contains everything needed to load the tokenizer.
|
| 187 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 188 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 189 |
+
token instead. Not applicable to this tokenizer.
|
| 190 |
+
bos_token (`str`, *optional*):
|
| 191 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
| 192 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 193 |
+
The end of sequence token.
|
| 194 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 195 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 196 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
| 197 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
| 198 |
+
"""
|
| 199 |
+
|
| 200 |
+
slow_tokenizer_class = Qwen2Tokenizer
|
| 201 |
+
padding_side = "left"
|
| 202 |
+
|
| 203 |
+
def __init__(
|
| 204 |
+
self,
|
| 205 |
+
vocab_file=None,
|
| 206 |
+
merges_file=None,
|
| 207 |
+
tokenizer_file=None,
|
| 208 |
+
unk_token="<|endoftext|>",
|
| 209 |
+
bos_token=None,
|
| 210 |
+
eos_token="<|endoftext|>",
|
| 211 |
+
pad_token="<|endoftext|>",
|
| 212 |
+
add_eos_token=False,
|
| 213 |
+
**kwargs,
|
| 214 |
+
):
|
| 215 |
+
super().__init__(
|
| 216 |
+
vocab_file=vocab_file,
|
| 217 |
+
merges_file=merges_file,
|
| 218 |
+
tokenizer_file=tokenizer_file,
|
| 219 |
+
unk_token=unk_token,
|
| 220 |
+
bos_token=bos_token,
|
| 221 |
+
eos_token=eos_token,
|
| 222 |
+
pad_token=pad_token,
|
| 223 |
+
**kwargs,
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
self._add_eos_token = add_eos_token
|
| 227 |
+
self.update_post_processor()
|
| 228 |
+
|
| 229 |
+
def update_post_processor(self):
|
| 230 |
+
"""
|
| 231 |
+
Updates the underlying post processor with the current `eos_token`.
|
| 232 |
+
"""
|
| 233 |
+
eos = self.eos_token
|
| 234 |
+
eos_token_id = self.eos_token_id
|
| 235 |
+
if eos is None and self.add_eos_token:
|
| 236 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
| 237 |
+
|
| 238 |
+
single = f"$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
| 239 |
+
pair = f"{single} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
| 240 |
+
|
| 241 |
+
special_tokens = []
|
| 242 |
+
if self.add_eos_token:
|
| 243 |
+
special_tokens.append((eos, eos_token_id))
|
| 244 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
| 245 |
+
single=single, pair=pair, special_tokens=special_tokens
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
@property
|
| 249 |
+
def add_eos_token(self):
|
| 250 |
+
return self._add_eos_token
|
tokenizer_config.json
CHANGED
|
@@ -202,7 +202,7 @@
|
|
| 202 |
],
|
| 203 |
"auto_map": {
|
| 204 |
"AutoTokenizer": [
|
| 205 |
-
"
|
| 206 |
null
|
| 207 |
]
|
| 208 |
},
|
|
|
|
| 202 |
],
|
| 203 |
"auto_map": {
|
| 204 |
"AutoTokenizer": [
|
| 205 |
+
"tokenization_qwen.Qwen2Tokenizer",
|
| 206 |
null
|
| 207 |
]
|
| 208 |
},
|