Upload folder using huggingface_hub
Browse files- .gitattributes +6 -0
- README.md +167 -3
- added_tokens.json +7 -0
- assets/cir_candi_1.png +0 -0
- assets/cir_candi_2.png +3 -0
- assets/cir_query.png +3 -0
- assets/res-ft-mmeb.png +3 -0
- assets/res-scaling.png +3 -0
- assets/res-zs-cir.png +3 -0
- assets/res-zs-mmeb.png +3 -0
- config.json +66 -0
- generation_config.json +6 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +694 -0
- modeling_llavanext_for_embedding.py +329 -0
- preprocessor_config.json +52 -0
- special_tokens_map.json +53 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +93 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
assets/cir_candi_2.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
assets/cir_query.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
assets/res-ft-mmeb.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
assets/res-scaling.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
assets/res-zs-cir.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
assets/res-zs-mmeb.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,167 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- llava-hf/llava-v1.6-mistral-7b-hf
|
| 7 |
+
tags:
|
| 8 |
+
- multimodal-retrieval
|
| 9 |
+
- embedding-model
|
| 10 |
+
---
|
| 11 |
+
<h1 align="center">MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval</h1>
|
| 12 |
+
|
| 13 |
+
<p align="center">
|
| 14 |
+
<a href="https://arxiv.org/abs/2412.14475">
|
| 15 |
+
<img alt="Build" src="http://img.shields.io/badge/cs.CV-arXiv%3A2412.14475-B31B1B.svg">
|
| 16 |
+
</a>
|
| 17 |
+
<a href="https://github.com/VectorSpaceLab/MegaPairs">
|
| 18 |
+
<img alt="Build" src="https://img.shields.io/badge/Github-Code-blue">
|
| 19 |
+
</a>
|
| 20 |
+
<a href="https://huggingface.co/datasets/JUNJIE99/MegaPairs">
|
| 21 |
+
<img alt="Build" src="https://img.shields.io/badge/🤗 Datasets-MegaPairs-yellow">
|
| 22 |
+
</p>
|
| 23 |
+
|
| 24 |
+
<p align="center">
|
| 25 |
+
</a>
|
| 26 |
+
<a href="https://huggingface.co/JUNJIE99/MMRet-base">
|
| 27 |
+
<img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_base-yellow">
|
| 28 |
+
</a>
|
| 29 |
+
<a href="https://huggingface.co/JUNJIE99/MMRet-large">
|
| 30 |
+
<img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_large-yellow">
|
| 31 |
+
</a>
|
| 32 |
+
<a href="https://huggingface.co/JUNJIE99/MMRet-MLLM-S1">
|
| 33 |
+
<img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_MLLM_S1-yellow">
|
| 34 |
+
</a>
|
| 35 |
+
<a href="https://huggingface.co/JUNJIE99/MMRet-MLLM-S2">
|
| 36 |
+
<img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_MLLM_S2-yellow">
|
| 37 |
+
</a>
|
| 38 |
+
</p>
|
| 39 |
+
|
| 40 |
+
## News
|
| 41 |
+
```2024-3-4``` 🚀🚀 We have released the MMRet-MLLM models on Hugging Face: [MMRet-MLLM-S1](https://huggingface.co/JUNJIE99/MMRet-MLLM-S1) and [MMRet-MLLM-S2](https://huggingface.co/JUNJIE99/MMRet-MLLM-S2). **MMRet-MLLM-S1** is trained exclusively on our MegaPairs dataset, achieving outstanding performance in composed image retrieval, with an 8.1% improvement on the CIRCO benchmark (mAP@5) over the previous state-of-the-art. **MMRet-MLLM-S2** builds on MMRet-MLLM-S1 with an additional epoch of fine-tuning on the MMEB benchmark training set, delivering enhanced performance across a broader range of multimodal embedding tasks.
|
| 42 |
+
|
| 43 |
+
```2024-12-27``` 🚀🚀 MMRet-CLIP models are released in Huggingface: [MMRet-base](https://huggingface.co/JUNJIE99/MMRet-base) and [MMRet-large](https://huggingface.co/JUNJIE99/MMRet-large).
|
| 44 |
+
|
| 45 |
+
```2024-12-19``` 🎉🎉 Release our paper: [MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval](https://arxiv.org/pdf/2412.14475).
|
| 46 |
+
|
| 47 |
+
## Release Plan
|
| 48 |
+
- [x] Paper
|
| 49 |
+
- [x] MMRet-base and MMRet-large models
|
| 50 |
+
- [x] MMRet-MLLM model
|
| 51 |
+
- [ ] MegaPairs Dataset
|
| 52 |
+
- [ ] Evaluation code
|
| 53 |
+
- [ ] Fine-tuning code
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
## Introduction
|
| 57 |
+
In this project, we introduce **MegaPairs**, a novel data synthesis method that leverages open-domain images to create *heterogeneous KNN triplets* for universal multimodal retrieval. Our MegaPairs dataset contains over 26 million triplets, and we have trained a series of multimodal retrieval models, **MMRets**, including MMRet-CLIP (base and large) and MMRet-MLLM.
|
| 58 |
+
|
| 59 |
+
MMRets achieve state-of-the-art performance on four popular zero-shot composed image retrieval benchmarks and the massive multimodal embedding benchmark (MMEB). Extensive experiments demonstrate the ***efficiency, scalability, and generalization*** features of MegaPairs. Please refer to our [paper](https://arxiv.org/abs/2412.14475) for more details.
|
| 60 |
+
|
| 61 |
+
## Model Usage
|
| 62 |
+
|
| 63 |
+
### 1. MMRet-CLIP Models
|
| 64 |
+
You can easily use MMRet-CLIP models based on ```transformers```
|
| 65 |
+
```python
|
| 66 |
+
import torch
|
| 67 |
+
from transformers import AutoModel
|
| 68 |
+
|
| 69 |
+
MODEL_NAME = "JUNJIE99/MMRet-base" # or "JUNJIE99/MMRet-large"
|
| 70 |
+
|
| 71 |
+
model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True) # You must set trust_remote_code=True
|
| 72 |
+
model.set_processor(MODEL_NAME)
|
| 73 |
+
model.eval()
|
| 74 |
+
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
query = model.encode(
|
| 77 |
+
images = "./assets/cir_query.png",
|
| 78 |
+
text = "Make the background dark, as if the camera has taken the photo at night"
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
candidates = model.encode(
|
| 82 |
+
images = ["./assets/cir_candi_1.png", "./assets/cir_candi_2.png"]
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
scores = query @ candidates.T
|
| 86 |
+
print(scores)
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
### 2. MMRet-MLLM Models
|
| 90 |
+
```python
|
| 91 |
+
import torch
|
| 92 |
+
from transformers import AutoModel
|
| 93 |
+
from PIL import Image
|
| 94 |
+
|
| 95 |
+
MODEL_NAME= "JUNJIE99/MMRet-MLLM-S1"
|
| 96 |
+
|
| 97 |
+
model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 98 |
+
model.eval()
|
| 99 |
+
model.cuda()
|
| 100 |
+
|
| 101 |
+
with torch.no_grad():
|
| 102 |
+
model.set_processor(MODEL_NAME)
|
| 103 |
+
|
| 104 |
+
query_inputs = model.data_process(
|
| 105 |
+
text="Make the background dark, as if the camera has taken the photo at night",
|
| 106 |
+
images="./assets/cir_query.png",
|
| 107 |
+
q_or_c="q",
|
| 108 |
+
task_instruction="Retrieve the target image that best meets the combined criteria by using both the provided image and the image retrieval instructions: "
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
candidate_inputs = model.data_process(
|
| 112 |
+
images=["./assets/cir_candi_1.png", "./assets/cir_candi_2.png"],
|
| 113 |
+
q_or_c="c",
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
query_embs = model(**query_inputs, output_hidden_states=True)[:, -1, :]
|
| 117 |
+
candi_embs = model(**candidate_inputs, output_hidden_states=True)[:, -1, :]
|
| 118 |
+
|
| 119 |
+
query_embs = torch.nn.functional.normalize(query_embs, dim=-1)
|
| 120 |
+
candi_embs = torch.nn.functional.normalize(candi_embs, dim=-1)
|
| 121 |
+
|
| 122 |
+
scores = torch.matmul(query_embs, candi_embs.T)
|
| 123 |
+
print(scores)
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
## Model Performance
|
| 128 |
+
### Zero-Shot Composed Image Retrieval
|
| 129 |
+
|
| 130 |
+
MMRet sets a new performance benchmark in zero-shot composed image retrieval tasks. On the CIRCO benchmark, our MMRet-base model, with only 149 million parameters, surpasses all previous models, including those with 50 times more parameters. Additionally, MMRet-MLLM achieves an 8.1% improvement over the previous state-of-the-art model.
|
| 131 |
+
|
| 132 |
+
<img src="./assets/res-zs-cir.png" width="800">
|
| 133 |
+
|
| 134 |
+
### Zero-Shot Performance on MMEB
|
| 135 |
+
|
| 136 |
+
MMRet-MLLM achieves state-of-the-art zero-shot performance on the Massive Multimodal Embedding Benchmark (MMEB), despite being trained only on the ImageText-to-Image paradigm. This demonstrates the excellent generalization capability of MegaPairs for multimodal embedding.
|
| 137 |
+
|
| 138 |
+
<img src="./assets/res-zs-mmeb.png" width="800">
|
| 139 |
+
|
| 140 |
+
### Fine-Tuning Performance on MMEB
|
| 141 |
+
|
| 142 |
+
After fine-tuning on downstream tasks, MMRet-MLLM maintains its leading performance. Notably, it surpasses the previous state-of-the-art by 7.1% on the MMEB out-of-distribution (OOD) set. These results demonstrate the robust generalization capability of MMRet-MLLM and highlight the potential of MegaPairs as foundational training data for universal multimodal embedding.
|
| 143 |
+
|
| 144 |
+
<img src="./assets/res-ft-mmeb.png" width="800">
|
| 145 |
+
|
| 146 |
+
### Performance Scaling
|
| 147 |
+
MegaPairs showcases **scalability**: MMRet-base improves as training data increases. It also demonstrates **efficiency**: with just 0.5M training samples, MMRet-base significantly outperforms MagicLens, which uses the same CLIP-base backbone and was trained on 36.7M samples.
|
| 148 |
+
|
| 149 |
+
<img src="./assets/res-scaling.png" width="800">
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
## License
|
| 153 |
+
The annotations for MegaPairs and the MMRet models are released under the [MIT License](LICENSE). The images in MegaPairs originate from the [Recap-Datacomp](https://huggingface.co/datasets/UCSC-VLAA/Recap-DataComp-1B), which is released under the CC BY 4.0 license.
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
## Citation
|
| 158 |
+
If you find this repository useful, please consider giving a star ⭐ and citation
|
| 159 |
+
|
| 160 |
+
```
|
| 161 |
+
@article{zhou2024megapairs,
|
| 162 |
+
title={MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval},
|
| 163 |
+
author={Zhou, Junjie and Liu, Zheng and Liu, Ze and Xiao, Shitao and Wang, Yueze and Zhao, Bo and Zhang, Chen Jason and Lian, Defu and Xiong, Yongping},
|
| 164 |
+
journal={arXiv preprint arXiv:2412.14475},
|
| 165 |
+
year={2024}
|
| 166 |
+
}
|
| 167 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<image>": 32000,
|
| 3 |
+
"<instruct>": 32002,
|
| 4 |
+
"<pad>": 32001,
|
| 5 |
+
"<query_txt_img>": 32003,
|
| 6 |
+
"<target_img>": 32004
|
| 7 |
+
}
|
assets/cir_candi_1.png
ADDED
|
assets/cir_candi_2.png
ADDED
|
Git LFS Details
|
assets/cir_query.png
ADDED
|
Git LFS Details
|
assets/res-ft-mmeb.png
ADDED
|
Git LFS Details
|
assets/res-scaling.png
ADDED
|
Git LFS Details
|
assets/res-zs-cir.png
ADDED
|
Git LFS Details
|
assets/res-zs-mmeb.png
ADDED
|
Git LFS Details
|
config.json
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LlavaNextForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"ignore_index": -100,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoModel": "modeling_llavanext_for_embedding.LLaVANextForEmbedding"
|
| 8 |
+
},
|
| 9 |
+
"image_grid_pinpoints": [
|
| 10 |
+
[
|
| 11 |
+
336,
|
| 12 |
+
672
|
| 13 |
+
],
|
| 14 |
+
[
|
| 15 |
+
672,
|
| 16 |
+
336
|
| 17 |
+
],
|
| 18 |
+
[
|
| 19 |
+
672,
|
| 20 |
+
672
|
| 21 |
+
],
|
| 22 |
+
[
|
| 23 |
+
1008,
|
| 24 |
+
336
|
| 25 |
+
],
|
| 26 |
+
[
|
| 27 |
+
336,
|
| 28 |
+
1008
|
| 29 |
+
]
|
| 30 |
+
],
|
| 31 |
+
"image_token_index": 32000,
|
| 32 |
+
"model_type": "llava_next",
|
| 33 |
+
"projector_hidden_act": "gelu",
|
| 34 |
+
"text_config": {
|
| 35 |
+
"_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
|
| 36 |
+
"architectures": [
|
| 37 |
+
"MistralForCausalLM"
|
| 38 |
+
],
|
| 39 |
+
"intermediate_size": 14336,
|
| 40 |
+
"max_position_embeddings": 32768,
|
| 41 |
+
"model_type": "mistral",
|
| 42 |
+
"num_key_value_heads": 8,
|
| 43 |
+
"rms_norm_eps": 1e-05,
|
| 44 |
+
"rope_theta": 1000000.0,
|
| 45 |
+
"sliding_window": null,
|
| 46 |
+
"torch_dtype": "bfloat16",
|
| 47 |
+
"vocab_size": 32064
|
| 48 |
+
},
|
| 49 |
+
"torch_dtype": "float16",
|
| 50 |
+
"transformers_version": "4.39.0.dev0",
|
| 51 |
+
"use_image_newline_parameter": true,
|
| 52 |
+
"vision_config": {
|
| 53 |
+
"hidden_size": 1024,
|
| 54 |
+
"image_size": 336,
|
| 55 |
+
"intermediate_size": 4096,
|
| 56 |
+
"model_type": "clip_vision_model",
|
| 57 |
+
"num_attention_heads": 16,
|
| 58 |
+
"num_hidden_layers": 24,
|
| 59 |
+
"patch_size": 14,
|
| 60 |
+
"projection_dim": 768,
|
| 61 |
+
"vocab_size": 32000
|
| 62 |
+
},
|
| 63 |
+
"vision_feature_layer": -2,
|
| 64 |
+
"vision_feature_select_strategy": "default",
|
| 65 |
+
"vocab_size": 32064
|
| 66 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"transformers_version": "4.45.2"
|
| 6 |
+
}
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c159ef41d990335ec65527c5618ce2db8eaf7ba313cdf76ce3e5d8ebab769f49
|
| 3 |
+
size 4921618624
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f84c5f9de2923588d197c5061bb8758ac47234760187b0f0a47fe8c7f9ed3d3b
|
| 3 |
+
size 4915917672
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d979658c3247355ae48b455ecf17b854b4d9174119b6708264b6d2ac03f1f53
|
| 3 |
+
size 4915917680
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:11a28e976ee5a29f577985f5a1bfadb4e63b86bc234367bd985a1d59f8a412ad
|
| 3 |
+
size 380134008
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,694 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 15133495296
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"image_newline": "model-00001-of-00004.safetensors",
|
| 7 |
+
"language_model.lm_head.weight": "model-00004-of-00004.safetensors",
|
| 8 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 26 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 28 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 29 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 30 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 31 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 32 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 86 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 98 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 101 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 103 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 110 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 113 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 115 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 118 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 119 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 120 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 121 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 122 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 123 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 124 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 125 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 126 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 127 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 129 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 133 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 134 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 137 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 139 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 146 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 151 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 153 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 155 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 156 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 157 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 158 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 159 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 160 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 161 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 162 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 163 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 164 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 170 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 173 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 182 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 199 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 206 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 209 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 211 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 217 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 218 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 219 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 220 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 221 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 222 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 223 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 224 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 225 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 233 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 235 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 236 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 239 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 242 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 244 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 245 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 246 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 247 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 248 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 249 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 250 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 251 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 252 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 253 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 254 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 255 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 256 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 257 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 258 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 259 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 260 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 266 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 269 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 271 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 278 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 281 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 283 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 289 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 290 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 291 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 292 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 293 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 295 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"language_model.model.norm.weight": "model-00004-of-00004.safetensors",
|
| 298 |
+
"multi_modal_projector.linear_1.bias": "model-00001-of-00004.safetensors",
|
| 299 |
+
"multi_modal_projector.linear_1.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"multi_modal_projector.linear_2.bias": "model-00001-of-00004.safetensors",
|
| 301 |
+
"multi_modal_projector.linear_2.weight": "model-00001-of-00004.safetensors",
|
| 302 |
+
"vision_tower.vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
|
| 303 |
+
"vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
|
| 304 |
+
"vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00004.safetensors",
|
| 305 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 306 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 307 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 308 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 310 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 312 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 313 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 314 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 316 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 317 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 318 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 319 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 320 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 321 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 322 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 323 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 324 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 325 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 326 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 327 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 328 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 329 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 330 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 331 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 332 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 333 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 334 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 335 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 336 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 337 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 338 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 339 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 340 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 341 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 342 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 343 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 344 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 345 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 346 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 347 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 348 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 349 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 350 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 351 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 352 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 353 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 354 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 355 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 356 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 357 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 358 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 359 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 360 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 361 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 362 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 363 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 364 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 365 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 366 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 367 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 368 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 369 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 370 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 371 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 372 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 373 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 374 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 375 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 376 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 377 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 378 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 379 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 380 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 381 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 382 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 383 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 384 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 385 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 386 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 387 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 388 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 389 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 390 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 391 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 392 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 393 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 394 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 395 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 396 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 397 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 398 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 399 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 400 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 401 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 402 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 403 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 404 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 405 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 406 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 407 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 408 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 409 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 410 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 411 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 412 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 413 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 414 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 415 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 416 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 417 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 418 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 419 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 420 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 421 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 422 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 423 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 424 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 425 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 426 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 427 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 428 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 429 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 430 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 431 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 432 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 433 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 434 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 435 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 436 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 437 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 438 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 439 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 440 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 441 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 442 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 443 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 444 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 445 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 446 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 447 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 448 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 449 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 450 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 451 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 452 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 453 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 454 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 455 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 456 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 457 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 458 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 459 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 460 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 461 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 462 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 463 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 464 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 465 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 466 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 467 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 468 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 469 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 470 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 471 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 472 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 473 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 474 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 475 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 476 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 477 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 478 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 479 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 480 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 481 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 482 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 483 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 484 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 485 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 486 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 487 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 488 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 489 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 490 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 491 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 492 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 493 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 494 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 495 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 496 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 497 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 498 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 499 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 500 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 501 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 502 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 503 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 504 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 505 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 506 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 507 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 508 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 509 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 510 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 511 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 512 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 513 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 514 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 515 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 516 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 517 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 518 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 519 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 520 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 521 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 522 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 523 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 524 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 525 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 526 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 527 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 528 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 529 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 530 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 531 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 532 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 533 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 534 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 535 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 536 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 537 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 538 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 539 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 540 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 541 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 542 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 543 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 544 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 545 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 546 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 547 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 548 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 549 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 550 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 551 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 552 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 553 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 554 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 555 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 556 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 557 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 558 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 559 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 560 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 561 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 562 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 563 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 564 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 565 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 566 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 567 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 568 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 569 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 570 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 571 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 572 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 573 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 574 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 575 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 576 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 577 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 578 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 579 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 580 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 581 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 582 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 583 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 584 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 585 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 586 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 587 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 588 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 589 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 590 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 591 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 592 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 593 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 594 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 595 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 596 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 597 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 598 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 599 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 600 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 601 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 602 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 603 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 604 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 605 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 606 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 607 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 608 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 609 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 610 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 611 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 612 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 613 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 614 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 615 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 616 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 617 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 618 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 619 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 620 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 621 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 622 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 623 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 624 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 625 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 626 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 627 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 628 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 629 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 630 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 631 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 632 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 633 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 634 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 635 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 636 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 637 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 638 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 639 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 640 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 641 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 642 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 643 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 644 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 645 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 646 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 647 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 648 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 649 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 650 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 651 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 652 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 653 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 654 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 655 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 656 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 657 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 658 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 659 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 660 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 661 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 662 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 663 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 664 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 665 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 666 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 667 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 668 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 669 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 670 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 671 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 672 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 673 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 674 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 675 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 676 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 677 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 678 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 679 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 680 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 681 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 682 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 683 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 684 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 685 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 686 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 687 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 688 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 689 |
+
"vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 690 |
+
"vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 691 |
+
"vision_tower.vision_model.pre_layrnorm.bias": "model-00001-of-00004.safetensors",
|
| 692 |
+
"vision_tower.vision_model.pre_layrnorm.weight": "model-00001-of-00004.safetensors"
|
| 693 |
+
}
|
| 694 |
+
}
|
modeling_llavanext_for_embedding.py
ADDED
|
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import transformers
|
| 3 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, AutoModel
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import requests
|
| 7 |
+
from typing import List, Optional, Tuple, Union
|
| 8 |
+
from transformers.cache_utils import Cache
|
| 9 |
+
from transformers.models.llava_next.modeling_llava_next import image_size_to_num_patches
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def my_mistral_forward(
|
| 15 |
+
self,
|
| 16 |
+
input_ids: torch.LongTensor = None,
|
| 17 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 18 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 19 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 20 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 21 |
+
labels: Optional[torch.LongTensor] = None,
|
| 22 |
+
use_cache: Optional[bool] = None,
|
| 23 |
+
output_attentions: Optional[bool] = None,
|
| 24 |
+
output_hidden_states: Optional[bool] = None,
|
| 25 |
+
return_dict: Optional[bool] = None,
|
| 26 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 27 |
+
num_logits_to_keep: int = 0,
|
| 28 |
+
):
|
| 29 |
+
r"""
|
| 30 |
+
Args:
|
| 31 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 32 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 33 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 34 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 35 |
+
|
| 36 |
+
num_logits_to_keep (`int`, *optional*):
|
| 37 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
| 38 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
| 39 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 40 |
+
|
| 41 |
+
Returns:
|
| 42 |
+
|
| 43 |
+
Example:
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
| 47 |
+
|
| 48 |
+
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
| 49 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
| 50 |
+
|
| 51 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 52 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 53 |
+
|
| 54 |
+
>>> # Generate
|
| 55 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 56 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 57 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 58 |
+
```"""
|
| 59 |
+
|
| 60 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 61 |
+
output_hidden_states = (
|
| 62 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 63 |
+
)
|
| 64 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 65 |
+
|
| 66 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 67 |
+
outputs = self.model(
|
| 68 |
+
input_ids=input_ids,
|
| 69 |
+
attention_mask=attention_mask,
|
| 70 |
+
position_ids=position_ids,
|
| 71 |
+
past_key_values=past_key_values,
|
| 72 |
+
inputs_embeds=inputs_embeds,
|
| 73 |
+
use_cache=use_cache,
|
| 74 |
+
output_attentions=output_attentions,
|
| 75 |
+
output_hidden_states=output_hidden_states,
|
| 76 |
+
return_dict=return_dict,
|
| 77 |
+
cache_position=cache_position,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
hidden_states = outputs[0]
|
| 81 |
+
|
| 82 |
+
return hidden_states
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def transfer_mistral_forward():
|
| 86 |
+
transformers.models.mistral.MistralForCausalLM.forward = my_mistral_forward
|
| 87 |
+
|
| 88 |
+
class LLaVANextForEmbedding(LlavaNextForConditionalGeneration):
|
| 89 |
+
def __init__(self, config):
|
| 90 |
+
super().__init__(config)
|
| 91 |
+
|
| 92 |
+
transfer_mistral_forward()
|
| 93 |
+
def forward(
|
| 94 |
+
self,
|
| 95 |
+
input_ids: torch.LongTensor = None,
|
| 96 |
+
pixel_values: torch.FloatTensor = None,
|
| 97 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
| 98 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 99 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 100 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 101 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 102 |
+
vision_feature_layer: Optional[int] = None,
|
| 103 |
+
vision_feature_select_strategy: Optional[str] = None,
|
| 104 |
+
labels: Optional[torch.LongTensor] = None,
|
| 105 |
+
use_cache: Optional[bool] = None,
|
| 106 |
+
output_attentions: Optional[bool] = None,
|
| 107 |
+
output_hidden_states: Optional[bool] = None,
|
| 108 |
+
return_dict: Optional[bool] = None,
|
| 109 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 110 |
+
num_logits_to_keep: int = 0,
|
| 111 |
+
):
|
| 112 |
+
|
| 113 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 114 |
+
output_hidden_states = (
|
| 115 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 116 |
+
)
|
| 117 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 118 |
+
vision_feature_layer = (
|
| 119 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
| 120 |
+
)
|
| 121 |
+
vision_feature_select_strategy = (
|
| 122 |
+
vision_feature_select_strategy
|
| 123 |
+
if vision_feature_select_strategy is not None
|
| 124 |
+
else self.config.vision_feature_select_strategy
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 128 |
+
raise ValueError(
|
| 129 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
if pixel_values is not None and inputs_embeds is not None:
|
| 133 |
+
raise ValueError(
|
| 134 |
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
legacy_processing = False
|
| 138 |
+
if inputs_embeds is None:
|
| 139 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 140 |
+
|
| 141 |
+
# if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing
|
| 142 |
+
# not very reliable, but we don't expect one to actually pass 500+ images for one prompt
|
| 143 |
+
# In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True
|
| 144 |
+
legacy_processing = (
|
| 145 |
+
(input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
|
| 146 |
+
) or (input_ids.shape[-1] == 1 and pixel_values is not None)
|
| 147 |
+
|
| 148 |
+
if pixel_values is not None and pixel_values.size(0) > 0:
|
| 149 |
+
# ! infer image_num_patches from image_sizes
|
| 150 |
+
image_num_patches = [
|
| 151 |
+
image_size_to_num_patches(
|
| 152 |
+
image_size=imsize,
|
| 153 |
+
grid_pinpoints=self.config.image_grid_pinpoints,
|
| 154 |
+
patch_size=self.config.vision_config.image_size,
|
| 155 |
+
)
|
| 156 |
+
for imsize in image_sizes
|
| 157 |
+
]
|
| 158 |
+
# figure out if pixel_values is concatenated or stacked
|
| 159 |
+
if pixel_values.dim() == 5:
|
| 160 |
+
# stacking when input is (batch_size, num_patches, num_channels, height, width)
|
| 161 |
+
_pixel_values_list = [
|
| 162 |
+
pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)
|
| 163 |
+
]
|
| 164 |
+
pixel_values = torch.cat(_pixel_values_list, dim=0)
|
| 165 |
+
elif pixel_values.dim() != 4:
|
| 166 |
+
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
|
| 167 |
+
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
|
| 168 |
+
|
| 169 |
+
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
|
| 170 |
+
selected_image_feature = image_features.hidden_states[vision_feature_layer]
|
| 171 |
+
if vision_feature_select_strategy == "default":
|
| 172 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
| 173 |
+
elif vision_feature_select_strategy == "full":
|
| 174 |
+
selected_image_feature = selected_image_feature
|
| 175 |
+
image_features = self.multi_modal_projector(selected_image_feature)
|
| 176 |
+
image_features = torch.split(image_features, image_num_patches, dim=0)
|
| 177 |
+
|
| 178 |
+
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
|
| 179 |
+
image_features, feature_lens = self.pack_image_features(
|
| 180 |
+
image_features,
|
| 181 |
+
image_sizes,
|
| 182 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
| 183 |
+
image_newline=self.image_newline,
|
| 184 |
+
)
|
| 185 |
+
if legacy_processing:
|
| 186 |
+
logger.warning_once(
|
| 187 |
+
"Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. "
|
| 188 |
+
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
|
| 189 |
+
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
|
| 190 |
+
"Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
|
| 191 |
+
)
|
| 192 |
+
if input_ids.shape[1] != 1:
|
| 193 |
+
inputs_embeds = inputs_embeds.to(image_features.dtype)
|
| 194 |
+
inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
|
| 195 |
+
image_features,
|
| 196 |
+
feature_lens,
|
| 197 |
+
inputs_embeds,
|
| 198 |
+
input_ids,
|
| 199 |
+
attention_mask,
|
| 200 |
+
position_ids,
|
| 201 |
+
labels=labels,
|
| 202 |
+
)
|
| 203 |
+
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
|
| 204 |
+
else:
|
| 205 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
| 206 |
+
# that are set to 0
|
| 207 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
| 208 |
+
|
| 209 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
| 210 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
| 211 |
+
|
| 212 |
+
# Get the target length
|
| 213 |
+
target_length = input_ids.shape[1]
|
| 214 |
+
past_length = first_layer_past_key_value.shape[-1]
|
| 215 |
+
|
| 216 |
+
extended_attention_mask = torch.ones(
|
| 217 |
+
(attention_mask.shape[0], past_length),
|
| 218 |
+
dtype=attention_mask.dtype,
|
| 219 |
+
device=attention_mask.device,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
| 223 |
+
# if one uses Llava + Fused modules where the cache on the
|
| 224 |
+
# first iteration is already big enough, or if one passes custom cache
|
| 225 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
| 226 |
+
new_batch_index = batch_index[valid_indices]
|
| 227 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
| 228 |
+
|
| 229 |
+
# Zero-out the places where we don't need to attend
|
| 230 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
| 231 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
| 232 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
| 233 |
+
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[
|
| 234 |
+
-target_length:
|
| 235 |
+
]
|
| 236 |
+
|
| 237 |
+
# TODO: @raushan retain only the new behavior after v4.47
|
| 238 |
+
else:
|
| 239 |
+
special_image_mask = (
|
| 240 |
+
(input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds)
|
| 241 |
+
)
|
| 242 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
| 243 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
| 244 |
+
|
| 245 |
+
outputs = self.language_model(
|
| 246 |
+
attention_mask=attention_mask,
|
| 247 |
+
position_ids=position_ids,
|
| 248 |
+
past_key_values=past_key_values,
|
| 249 |
+
inputs_embeds=inputs_embeds,
|
| 250 |
+
use_cache=use_cache,
|
| 251 |
+
output_attentions=output_attentions,
|
| 252 |
+
output_hidden_states=output_hidden_states,
|
| 253 |
+
return_dict=return_dict,
|
| 254 |
+
cache_position=cache_position,
|
| 255 |
+
num_logits_to_keep=num_logits_to_keep,
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
return outputs
|
| 259 |
+
|
| 260 |
+
def set_processor(self, model_name):
|
| 261 |
+
self.processor = LlavaNextProcessor.from_pretrained(model_name)
|
| 262 |
+
def prepare_text_input(self, image=None, text=None, q_or_c=None, task_instruction=None):
|
| 263 |
+
task_instruction_example_cir = "Retrieve the target image that best meets the combined criteria by using both the provided image and the image retrieval instructions: "
|
| 264 |
+
|
| 265 |
+
assert q_or_c in ["query", "candidate", "q", "c"]
|
| 266 |
+
|
| 267 |
+
if "q" in q_or_c:
|
| 268 |
+
if task_instruction is None:
|
| 269 |
+
text_input = "[INST] \n <instruct> <query>"
|
| 270 |
+
print(f"""
|
| 271 |
+
Warning: For optimal performance, MMRet-MLLM requires the task instruction to be specified in the query.
|
| 272 |
+
For example, for the composed image retrieval task, you might use a specific instruction like: {task_instruction_example_cir}.
|
| 273 |
+
Instructions for other tasks can be referenced in the MMEB benchmark.
|
| 274 |
+
""")
|
| 275 |
+
elif task_instruction is not None:
|
| 276 |
+
text_input = f"[INST] \n <instruct> {task_instruction} <query> "
|
| 277 |
+
|
| 278 |
+
if text is not None:
|
| 279 |
+
text_input = f"{text_input} {text} \n"
|
| 280 |
+
if image is not None:
|
| 281 |
+
text_input = f"{text_input} <image>"
|
| 282 |
+
|
| 283 |
+
text_input = f"{text_input} [/INST]"
|
| 284 |
+
else:
|
| 285 |
+
text_input = "[INST] "
|
| 286 |
+
if text is not None:
|
| 287 |
+
text_input = f"{text_input} {text} \n"
|
| 288 |
+
if image is not None:
|
| 289 |
+
text_input = f"{text_input} <image>"
|
| 290 |
+
text_input = f"{text_input} [/INST]"
|
| 291 |
+
|
| 292 |
+
return text_input
|
| 293 |
+
|
| 294 |
+
def data_process(self, images=None, text=None, q_or_c=None, task_instruction=None):
|
| 295 |
+
if images is not None:
|
| 296 |
+
_is_list = isinstance(images, list)
|
| 297 |
+
elif text is not None:
|
| 298 |
+
_is_list = isinstance(text, list)
|
| 299 |
+
else:
|
| 300 |
+
raise ValueError("images and text cannot be both None.")
|
| 301 |
+
|
| 302 |
+
assert q_or_c in ["query", "candidate", "q", "c"]
|
| 303 |
+
|
| 304 |
+
if not _is_list :
|
| 305 |
+
text_input = self.prepare_text_input(images, text, q_or_c, task_instruction)
|
| 306 |
+
text_input = [text_input]
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
if images is not None:
|
| 310 |
+
images = Image.open(images).resize((512,512)).convert("RGB")
|
| 311 |
+
images = [images]
|
| 312 |
+
inputs = self.processor(images=images, text=text_input, return_tensors="pt", padding=True)
|
| 313 |
+
else:
|
| 314 |
+
inputs = self.processor(text=text_input, return_tensors="pt", padding=True)
|
| 315 |
+
|
| 316 |
+
else:
|
| 317 |
+
if text is None:
|
| 318 |
+
text = [None] * len(images)
|
| 319 |
+
text_input = [self.prepare_text_input(_image, _text, q_or_c, task_instruction) for _image, _text in zip(images, text)]
|
| 320 |
+
|
| 321 |
+
if images is not None:
|
| 322 |
+
images = [Image.open(_image).resize((512,512)).convert("RGB") for _image in images]
|
| 323 |
+
inputs = self.processor(images=images, text=text_input, return_tensors="pt", padding=True)
|
| 324 |
+
else:
|
| 325 |
+
inputs = self.processor(text=text_input, return_tensors="pt", padding=True)
|
| 326 |
+
|
| 327 |
+
inputs = inputs.to(self.device)
|
| 328 |
+
|
| 329 |
+
return inputs
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"aspect_ratio_setting": "anyres",
|
| 3 |
+
"crop_size": {
|
| 4 |
+
"height": 336,
|
| 5 |
+
"width": 336
|
| 6 |
+
},
|
| 7 |
+
"do_center_crop": true,
|
| 8 |
+
"do_convert_rgb": true,
|
| 9 |
+
"do_normalize": true,
|
| 10 |
+
"do_pad": true,
|
| 11 |
+
"do_rescale": true,
|
| 12 |
+
"do_resize": true,
|
| 13 |
+
"image_grid_pinpoints": [
|
| 14 |
+
[
|
| 15 |
+
336,
|
| 16 |
+
672
|
| 17 |
+
],
|
| 18 |
+
[
|
| 19 |
+
672,
|
| 20 |
+
336
|
| 21 |
+
],
|
| 22 |
+
[
|
| 23 |
+
672,
|
| 24 |
+
672
|
| 25 |
+
],
|
| 26 |
+
[
|
| 27 |
+
1008,
|
| 28 |
+
336
|
| 29 |
+
],
|
| 30 |
+
[
|
| 31 |
+
336,
|
| 32 |
+
1008
|
| 33 |
+
]
|
| 34 |
+
],
|
| 35 |
+
"image_mean": [
|
| 36 |
+
0.48145466,
|
| 37 |
+
0.4578275,
|
| 38 |
+
0.40821073
|
| 39 |
+
],
|
| 40 |
+
"image_processor_type": "LlavaNextImageProcessor",
|
| 41 |
+
"image_std": [
|
| 42 |
+
0.26862954,
|
| 43 |
+
0.26130258,
|
| 44 |
+
0.27577711
|
| 45 |
+
],
|
| 46 |
+
"processor_class": "LlavaNextProcessor",
|
| 47 |
+
"resample": 3,
|
| 48 |
+
"rescale_factor": 0.00392156862745098,
|
| 49 |
+
"size": {
|
| 50 |
+
"shortest_edge": 336
|
| 51 |
+
}
|
| 52 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
{
|
| 4 |
+
"content": "<instruct>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"content": "<query_txt_img>",
|
| 12 |
+
"lstrip": false,
|
| 13 |
+
"normalized": false,
|
| 14 |
+
"rstrip": false,
|
| 15 |
+
"single_word": false
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"content": "<target_img>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
],
|
| 25 |
+
"bos_token": {
|
| 26 |
+
"content": "<s>",
|
| 27 |
+
"lstrip": false,
|
| 28 |
+
"normalized": false,
|
| 29 |
+
"rstrip": false,
|
| 30 |
+
"single_word": false
|
| 31 |
+
},
|
| 32 |
+
"eos_token": {
|
| 33 |
+
"content": "</s>",
|
| 34 |
+
"lstrip": false,
|
| 35 |
+
"normalized": false,
|
| 36 |
+
"rstrip": false,
|
| 37 |
+
"single_word": false
|
| 38 |
+
},
|
| 39 |
+
"pad_token": {
|
| 40 |
+
"content": "<pad>",
|
| 41 |
+
"lstrip": false,
|
| 42 |
+
"normalized": false,
|
| 43 |
+
"rstrip": false,
|
| 44 |
+
"single_word": false
|
| 45 |
+
},
|
| 46 |
+
"unk_token": {
|
| 47 |
+
"content": "<unk>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false
|
| 52 |
+
}
|
| 53 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
| 3 |
+
size 493443
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": true,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"32000": {
|
| 31 |
+
"content": "<image>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"32001": {
|
| 39 |
+
"content": "<pad>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"32002": {
|
| 47 |
+
"content": "<instruct>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"32003": {
|
| 55 |
+
"content": "<query_txt_img>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"32004": {
|
| 63 |
+
"content": "<target_img>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
}
|
| 70 |
+
},
|
| 71 |
+
"additional_special_tokens": [
|
| 72 |
+
"<instruct>",
|
| 73 |
+
"<query_txt_img>",
|
| 74 |
+
"<target_img>"
|
| 75 |
+
],
|
| 76 |
+
"bos_token": "<s>",
|
| 77 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
| 78 |
+
"clean_up_tokenization_spaces": false,
|
| 79 |
+
"eos_token": "</s>",
|
| 80 |
+
"legacy": true,
|
| 81 |
+
"max_length": null,
|
| 82 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 83 |
+
"pad_to_multiple_of": null,
|
| 84 |
+
"pad_token": "<pad>",
|
| 85 |
+
"pad_token_type_id": 0,
|
| 86 |
+
"padding_side": "left",
|
| 87 |
+
"processor_class": "LlavaNextProcessor",
|
| 88 |
+
"sp_model_kwargs": {},
|
| 89 |
+
"spaces_between_special_tokens": false,
|
| 90 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 91 |
+
"unk_token": "<unk>",
|
| 92 |
+
"use_default_system_prompt": false
|
| 93 |
+
}
|