Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 📝 Question Answers Roberta Model
|
| 2 |
+
|
| 3 |
+
This repository demonstrates how to **fine-tune** and **quantize** the [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) model for Question Answering using a sample dataset from Hugging Face Hub.
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## 🚀 Model Overview
|
| 8 |
+
- **Base Model:** `deepset/roberta-base-squad2`
|
| 9 |
+
- **Task:** Extractive Question Answering
|
| 10 |
+
- **Precision:** Supports FP32, FP16 (half-precision), and INT8 (quantized)
|
| 11 |
+
- **Dataset:** [`squad`](https://huggingface.co/datasets/squad) — Stanford Question Answering Dataset (Hugging Face Datasets)
|
| 12 |
+
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
## 📦 Dataset Used
|
| 16 |
+
We use the **`squad`** dataset from Hugging Face:
|
| 17 |
+
```bash
|
| 18 |
+
pip install datasets
|
| 19 |
+
```
|
| 20 |
+
# Dataset
|
| 21 |
+
```Pyhton
|
| 22 |
+
from datasets import load_dataset
|
| 23 |
+
|
| 24 |
+
dataset = load_dataset("squad")
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
# Load Model & Tokenizer:
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
|
| 31 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, TrainingArguments, Trainer
|
| 32 |
+
from datasets import load_dataset
|
| 33 |
+
|
| 34 |
+
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
| 36 |
+
dataset = load_dataset("squad")
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
# ✅ Results
|
| 40 |
+
Feature Benefit
|
| 41 |
+
FP16 Fine-Tuning - Faster Training + Lower Memory
|
| 42 |
+
INT8 Quantization - Smaller Model + Fast Inference
|
| 43 |
+
Dataset - Stanford QA Dataset (SQuAD)
|