Atharva31 commited on
Commit
fbf62ea
·
verified ·
1 Parent(s): a57c559

Upload the trained agent

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: We used a simple PPO RL Algorithm to train our RL agent to land safely on
10
+ the Moon.
11
+ results:
12
+ - task:
13
+ type: reinforcement-learning
14
+ name: reinforcement-learning
15
+ dataset:
16
+ name: LunarLander-v2
17
+ type: LunarLander-v2
18
+ metrics:
19
+ - type: mean_reward
20
+ value: 266.36 +/- 21.55
21
+ name: mean_reward
22
+ verified: false
23
+ ---
24
+
25
+ # **We used a simple PPO RL Algorithm to train our RL agent to land safely on the Moon.** Agent playing **LunarLander-v2**
26
+ This is a trained model of a **We used a simple PPO RL Algorithm to train our RL agent to land safely on the Moon.** agent playing **LunarLander-v2**
27
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
28
+
29
+ ## Usage (with Stable-baselines3)
30
+ TODO: Add your code
31
+
32
+
33
+ ```python
34
+ from stable_baselines3 import ...
35
+ from huggingface_sb3 import load_from_hub
36
+
37
+ ...
38
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a27f75bd620>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a27f75bd6c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a27f75bd760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a27f75bd800>", "_build": "<function ActorCriticPolicy._build at 0x7a27f75bd8a0>", "forward": "<function ActorCriticPolicy.forward at 0x7a27f75bd940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a27f75bd9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a27f75bda80>", "_predict": "<function ActorCriticPolicy._predict at 0x7a27f75bdb20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a27f75bdbc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a27f75bdc60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a27f75bdd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a27f750a800>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1747402221516028674, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACzd6s9KdAWuv6goDhVbxe2a52cus0GurcAAIA/AAAAADOWE75Deze8YVeJvClWJrstNqE9krkJPAAAgD8AAIA/87GuPR9dvrmOciw6ZtlWtekyQjvNH0i5AAAAAAAAgD+zl/49j4JoOT5Vn7yV1ae6V6U+PObck7sAAIA/AACAPwD9d70paBW6dc4COFmcgzMfLMk7A3MZtwAAgD8AAIA/JRWavqzN9z4yUGQ+YLi6vksVBb6CjPM9AAAAAAAAAAAzVSO9j3ZXuk65jbTiQOit1+s5ux/ClTMAAIA/AACAPxNnBD6YTuM9NS3rvSQPhb4ArWm8oMW6uwAAAAAAAAAAOmIAPoX2NT51UF6+39Z3voK3f70qRG04AAAAAAAAAAAtxRM+vGBQPfv+Ub7a3Va+w3EQvI7zEb0AAAAAAAAAAJq+3jwMh6k/XVe5PT2ZEr9uK3A9YgQOvQAAAAAAAAAAhk8oPpzXZrxoCoy6QXLBOA4qxb2YRLs5AACAPwAAgD9aCyE+NoQ2vODehbrl1J84T1CxvWHitjkAAIA/AACAP80FyLxAFbI/Kr3vvlsQab7We+87Tq5svQAAAAAAAAAAhpAyPjbmYbyi5hq7QJYrORcVvr32F0M6AACAPwAAgD8zczs6nw/7u8OtwrsWdQE8De1RPatV5rwAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHQRYA80UGqMAWyUS8uMAXSUR0CVu8m8ujASdX2UKGgGR0BwKIQL/jsEaAdL6GgIR0CVvD3VCojwdX2UKGgGR0Bw3Oed07r+aAdL32gIR0CVvkaNuLrHdX2UKGgGR0BxE19d/rjYaAdL62gIR0CVvreFtbcHdX2UKGgGR0Bv7N2ovSMMaAdL0WgIR0CVvxh1DBuXdX2UKGgGR0BfPhZ2ZApsaAdN6ANoCEdAlb/YIBzV+nV9lChoBkdAcMvakRBeHGgHS9loCEdAlcBEwBYFJXV9lChoBkdAcOo8xKxs22gHS8FoCEdAlcBY0dilSHV9lChoBkdAcV6+X7cfvGgHS99oCEdAlcDLSVnmJXV9lChoBkdAcTzE25xzaWgHS+poCEdAlcD6Qmu1W3V9lChoBkdAcvHUnogV5GgHS+poCEdAlcFiPQv6CXV9lChoBkdAcTQL39JjD2gHS91oCEdAlcF8y31BdHV9lChoBkdAbKRe0ojOcGgHS85oCEdAlcIpwbVBlnV9lChoBkdAcLHwzch1T2gHS/JoCEdAlcKtTUAks3V9lChoBkdAcSfTxXnyNGgHS9ZoCEdAlcRP9YOlPHV9lChoBkdAcEqQ4S6DoWgHS+ZoCEdAlcU4k3S8anV9lChoBkdAcdJ+mm+Cb2gHS/RoCEdAlcYOaz/p+3V9lChoBkdAbnZQSBbwB2gHS9loCEdAlcZijcmBv3V9lChoBkdAcbhZEUj9oGgHS+doCEdAlcblwgkkbHV9lChoBkdAcA5SPU8V6GgHS8poCEdAlccskyDZlHV9lChoBkdAb71t6X0GvGgHS+loCEdAlcd5RfnfVXV9lChoBkdAcFtd3B55aGgHS+doCEdAlcecujASF3V9lChoBkdAcL2zwMH8j2gHS9ZoCEdAlcet+5OJtXV9lChoBkdAcZQOXmeUZGgHS8VoCEdAlcfyCz1K5HV9lChoBkdAZR/jTa0x/WgHTegDaAhHQJXIas90Rvp1fZQoaAZHQGx0AZ88cMpoB0vaaAhHQJXJFTCLuQZ1fZQoaAZHQHG7fHggow5oB0v6aAhHQJXLs1qFh5R1fZQoaAZHQHDOlEuxrzpoB00KAWgIR0CVzUHyVfNSdX2UKGgGR0BwxNMAWBSUaAdL9WgIR0CVzXHSnccmdX2UKGgGR0BxRNIRRMviaAdL7WgIR0CVzh9OymhudX2UKGgGR0BwRP3WWhRJaAdL5GgIR0CVzmp0fYBedX2UKGgGR0BtngZl4C6paAdL1WgIR0CVznNn5BTodX2UKGgGR0ByDq5sj3VTaAdNFQFoCEdAlc7VCHARCnV9lChoBkdAcfP3AEdNnGgHS/JoCEdAlc8Fz2exwHV9lChoBkdAYQFPIGQjlmgHTegDaAhHQJXPWOHWSU11fZQoaAZHQHLPtdiUgSxoB00dAWgIR0CVz8j1PFefdX2UKGgGR0BwL3Jnxri3aAdL4WgIR0CVz/VZcLSedX2UKGgGR0BlXBuXNTtLaAdN6ANoCEdAldAhgE2YOXV9lChoBkdAbU5zmwJPZmgHS9poCEdAldIUZR8+inV9lChoBkdAckxhdMTN+2gHS95oCEdAldOhsqJ/G3V9lChoBkdAcG/ThHbypmgHS+doCEdAldTgVXV9W3V9lChoBkdAcqOgNwzch2gHS+hoCEdAldTgzpHI63V9lChoBkdAczd2kSElFGgHS9BoCEdAldUdBWxQi3V9lChoBkdAZXfeN1hb4mgHTegDaAhHQJXVeVLSNOx1fZQoaAZHQHFuhq46Oo5oB0v9aAhHQJXV+KwY+B91fZQoaAZHQHFfV9jPOY9oB0vkaAhHQJXWOJaaCtl1fZQoaAZHQHIJQ79ycTdoB00kAWgIR0CV1mu5BkZrdX2UKGgGR0BxUYM1CPZJaAdL6WgIR0CV1owgTyrgdX2UKGgGR0BywA+xGDtgaAdNDwFoCEdAldapbdJrcnV9lChoBkdAcNODA8B+4WgHS+9oCEdAldbesgdOqXV9lChoBkdAcAslCTlkpmgHS+ZoCEdAldpZmmLtNXV9lChoBkdAcHyGnGbTdGgHS9loCEdAldsuAiFCcHV9lChoBkdAbkblmOEM9mgHS81oCEdAldtwNkOI7HV9lChoBkdAckN/T9bX6WgHTQMBaAhHQJXctmapgkV1fZQoaAZHQHA8SUkfLcNoB0vPaAhHQJXc3iKiwjd1fZQoaAZHQHCghwqAjIJoB0vpaAhHQJXdEdmxt551fZQoaAZHQGJKVEE1VHZoB03oA2gIR0CV3UpPRArydX2UKGgGR0BwMcvqTr3TaAdL52gIR0CV3hA2Q4jsdX2UKGgGR0BxcjbmEGqxaAdL82gIR0CV3i12q1gIdX2UKGgGR0BxUFNBWxQjaAdNCAFoCEdAld6SHdoFmnV9lChoBkdAcsxMH8jzI2gHTSMBaAhHQJXfb5WRzRx1fZQoaAZHQHFr6VUuL75oB0voaAhHQJXjNjiGWUt1fZQoaAZHQHNy4k/r0J5oB0vVaAhHQJXjeMZP2wp1fZQoaAZHQHBMzrZ8KHBoB0vNaAhHQJXlfbRF7Up1fZQoaAZHQHElYWDYh+xoB0v4aAhHQJXlfvttygh1fZQoaAZHQHDUfHggow5oB0vuaAhHQJXms9Mbm2d1fZQoaAZHQHFoJ97WuoxoB0vIaAhHQJXmzaxoqTd1fZQoaAZHQHJUG2TgVGloB0vuaAhHQJXnYZzgdfd1fZQoaAZHQHIDyidrftRoB0vTaAhHQJXnabiIcip1fZQoaAZHQGOONtygf2doB03oA2gIR0CV6Fvc8DB/dX2UKGgGR0BxbhbwBo25aAdL5GgIR0CV6OwOe8PGdX2UKGgGR0Blkq6jFhoeaAdN6ANoCEdAlekvP1L8JnV9lChoBkdAcuSCMPz4DmgHTQQBaAhHQJXpSIWP91l1fZQoaAZHQHGKFVxS5y5oB0v7aAhHQJXsuKyfL9x1fZQoaAZHQHFz4lyBCldoB0vSaAhHQJXsy+PBBRh1fZQoaAZHQG8Lg2ZRbbFoB0vPaAhHQJXuJwkxASp1fZQoaAZHQHLpRQizLOloB0v4aAhHQJXuJobn5i51fZQoaAZHQHA/vDDTBqNoB0vjaAhHQJXuRaX8fmt1fZQoaAZHQHIiwaaTfSBoB0vpaAhHQJXuiWv8qF11fZQoaAZHQGPJ75dnkDJoB03oA2gIR0CV7pqptJnQdX2UKGgGR0BxfjGS6lLwaAdL4WgIR0CV7rfdhy80dX2UKGgGR0Buhs9hZyMlaAdNQAFoCEdAle7fQSi/PHV9lChoBkdAcKc6j3225WgHS81oCEdAle+A7cO9WnV9lChoBkdAcd/nVoYek2gHS/loCEdAlfA0fcN6PnV9lChoBkdAcd7npSrHVGgHTRcBaAhHQJXyDUWl/H51fZQoaAZHQGAOkxh2GItoB03oA2gIR0CV87dhy8zzdX2UKGgGR0Bwogw35vcaaAdL+2gIR0CV9JYDklu4dX2UKGgGR0BwfsfeUILPaAdL2GgIR0CV9LyWRigCdX2UKGgGR0Bwue7cwg1WaAdL2GgIR0CV9NnX/YJ3dX2UKGgGR0BqmUKVpsXSaAdNDQFoCEdAlfU5dWyTp3V9lChoBkdAbZkGD+R5kmgHS99oCEdAlfV7GWD6FnV9lChoBkdAcGmNGEwnIGgHS+toCEdAlfWtq59Vm3V9lChoBkdAcZzbBGhEjWgHS+loCEdAlfWuAqd6LXV9lChoBkdAcEyKvV3EAGgHS+RoCEdAlfXNyT6i03V9lChoBkdAcf21XeWOZWgHTREBaAhHQJX2biEQGwB1fZQoaAZHQFzVN0/4ZdhoB03oA2gIR0CV9s7OVxCIdX2UKGgGR0BwXmNo8IRiaAdL+mgIR0CV9wnK4hECdX2UKGgGR0ByN3D50r9VaAdLzWgIR0CV9/cHnlnzdX2UKGgGR0Bw/Dp5eJHiaAdL3mgIR0CV+cgVGkN4dX2UKGgGR0BydKI/JNj9aAdL3mgIR0CV+sFVDKHPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbfc65c6b68c799979322d032e1372560e5bc3da5043df94d8e0b3841d954134
3
+ size 148031
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a27f75bd620>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a27f75bd6c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a27f75bd760>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a27f75bd800>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a27f75bd8a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a27f75bd940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a27f75bd9e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a27f75bda80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a27f75bdb20>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a27f75bdbc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a27f75bdc60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a27f75bdd00>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a27f750a800>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1747402221516028674,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACzd6s9KdAWuv6goDhVbxe2a52cus0GurcAAIA/AAAAADOWE75Deze8YVeJvClWJrstNqE9krkJPAAAgD8AAIA/87GuPR9dvrmOciw6ZtlWtekyQjvNH0i5AAAAAAAAgD+zl/49j4JoOT5Vn7yV1ae6V6U+PObck7sAAIA/AACAPwD9d70paBW6dc4COFmcgzMfLMk7A3MZtwAAgD8AAIA/JRWavqzN9z4yUGQ+YLi6vksVBb6CjPM9AAAAAAAAAAAzVSO9j3ZXuk65jbTiQOit1+s5ux/ClTMAAIA/AACAPxNnBD6YTuM9NS3rvSQPhb4ArWm8oMW6uwAAAAAAAAAAOmIAPoX2NT51UF6+39Z3voK3f70qRG04AAAAAAAAAAAtxRM+vGBQPfv+Ub7a3Va+w3EQvI7zEb0AAAAAAAAAAJq+3jwMh6k/XVe5PT2ZEr9uK3A9YgQOvQAAAAAAAAAAhk8oPpzXZrxoCoy6QXLBOA4qxb2YRLs5AACAPwAAgD9aCyE+NoQ2vODehbrl1J84T1CxvWHitjkAAIA/AACAP80FyLxAFbI/Kr3vvlsQab7We+87Tq5svQAAAAAAAAAAhpAyPjbmYbyi5hq7QJYrORcVvr32F0M6AACAPwAAgD8zczs6nw/7u8OtwrsWdQE8De1RPatV5rwAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHQRYA80UGqMAWyUS8uMAXSUR0CVu8m8ujASdX2UKGgGR0BwKIQL/jsEaAdL6GgIR0CVvD3VCojwdX2UKGgGR0Bw3Oed07r+aAdL32gIR0CVvkaNuLrHdX2UKGgGR0BxE19d/rjYaAdL62gIR0CVvreFtbcHdX2UKGgGR0Bv7N2ovSMMaAdL0WgIR0CVvxh1DBuXdX2UKGgGR0BfPhZ2ZApsaAdN6ANoCEdAlb/YIBzV+nV9lChoBkdAcMvakRBeHGgHS9loCEdAlcBEwBYFJXV9lChoBkdAcOo8xKxs22gHS8FoCEdAlcBY0dilSHV9lChoBkdAcV6+X7cfvGgHS99oCEdAlcDLSVnmJXV9lChoBkdAcTzE25xzaWgHS+poCEdAlcD6Qmu1W3V9lChoBkdAcvHUnogV5GgHS+poCEdAlcFiPQv6CXV9lChoBkdAcTQL39JjD2gHS91oCEdAlcF8y31BdHV9lChoBkdAbKRe0ojOcGgHS85oCEdAlcIpwbVBlnV9lChoBkdAcLHwzch1T2gHS/JoCEdAlcKtTUAks3V9lChoBkdAcSfTxXnyNGgHS9ZoCEdAlcRP9YOlPHV9lChoBkdAcEqQ4S6DoWgHS+ZoCEdAlcU4k3S8anV9lChoBkdAcdJ+mm+Cb2gHS/RoCEdAlcYOaz/p+3V9lChoBkdAbnZQSBbwB2gHS9loCEdAlcZijcmBv3V9lChoBkdAcbhZEUj9oGgHS+doCEdAlcblwgkkbHV9lChoBkdAcA5SPU8V6GgHS8poCEdAlccskyDZlHV9lChoBkdAb71t6X0GvGgHS+loCEdAlcd5RfnfVXV9lChoBkdAcFtd3B55aGgHS+doCEdAlcecujASF3V9lChoBkdAcL2zwMH8j2gHS9ZoCEdAlcet+5OJtXV9lChoBkdAcZQOXmeUZGgHS8VoCEdAlcfyCz1K5HV9lChoBkdAZR/jTa0x/WgHTegDaAhHQJXIas90Rvp1fZQoaAZHQGx0AZ88cMpoB0vaaAhHQJXJFTCLuQZ1fZQoaAZHQHG7fHggow5oB0v6aAhHQJXLs1qFh5R1fZQoaAZHQHDOlEuxrzpoB00KAWgIR0CVzUHyVfNSdX2UKGgGR0BwxNMAWBSUaAdL9WgIR0CVzXHSnccmdX2UKGgGR0BxRNIRRMviaAdL7WgIR0CVzh9OymhudX2UKGgGR0BwRP3WWhRJaAdL5GgIR0CVzmp0fYBedX2UKGgGR0BtngZl4C6paAdL1WgIR0CVznNn5BTodX2UKGgGR0ByDq5sj3VTaAdNFQFoCEdAlc7VCHARCnV9lChoBkdAcfP3AEdNnGgHS/JoCEdAlc8Fz2exwHV9lChoBkdAYQFPIGQjlmgHTegDaAhHQJXPWOHWSU11fZQoaAZHQHLPtdiUgSxoB00dAWgIR0CVz8j1PFefdX2UKGgGR0BwL3Jnxri3aAdL4WgIR0CVz/VZcLSedX2UKGgGR0BlXBuXNTtLaAdN6ANoCEdAldAhgE2YOXV9lChoBkdAbU5zmwJPZmgHS9poCEdAldIUZR8+inV9lChoBkdAckxhdMTN+2gHS95oCEdAldOhsqJ/G3V9lChoBkdAcG/ThHbypmgHS+doCEdAldTgVXV9W3V9lChoBkdAcqOgNwzch2gHS+hoCEdAldTgzpHI63V9lChoBkdAczd2kSElFGgHS9BoCEdAldUdBWxQi3V9lChoBkdAZXfeN1hb4mgHTegDaAhHQJXVeVLSNOx1fZQoaAZHQHFuhq46Oo5oB0v9aAhHQJXV+KwY+B91fZQoaAZHQHFfV9jPOY9oB0vkaAhHQJXWOJaaCtl1fZQoaAZHQHIJQ79ycTdoB00kAWgIR0CV1mu5BkZrdX2UKGgGR0BxUYM1CPZJaAdL6WgIR0CV1owgTyrgdX2UKGgGR0BywA+xGDtgaAdNDwFoCEdAldapbdJrcnV9lChoBkdAcNODA8B+4WgHS+9oCEdAldbesgdOqXV9lChoBkdAcAslCTlkpmgHS+ZoCEdAldpZmmLtNXV9lChoBkdAcHyGnGbTdGgHS9loCEdAldsuAiFCcHV9lChoBkdAbkblmOEM9mgHS81oCEdAldtwNkOI7HV9lChoBkdAckN/T9bX6WgHTQMBaAhHQJXctmapgkV1fZQoaAZHQHA8SUkfLcNoB0vPaAhHQJXc3iKiwjd1fZQoaAZHQHCghwqAjIJoB0vpaAhHQJXdEdmxt551fZQoaAZHQGJKVEE1VHZoB03oA2gIR0CV3UpPRArydX2UKGgGR0BwMcvqTr3TaAdL52gIR0CV3hA2Q4jsdX2UKGgGR0BxcjbmEGqxaAdL82gIR0CV3i12q1gIdX2UKGgGR0BxUFNBWxQjaAdNCAFoCEdAld6SHdoFmnV9lChoBkdAcsxMH8jzI2gHTSMBaAhHQJXfb5WRzRx1fZQoaAZHQHFr6VUuL75oB0voaAhHQJXjNjiGWUt1fZQoaAZHQHNy4k/r0J5oB0vVaAhHQJXjeMZP2wp1fZQoaAZHQHBMzrZ8KHBoB0vNaAhHQJXlfbRF7Up1fZQoaAZHQHElYWDYh+xoB0v4aAhHQJXlfvttygh1fZQoaAZHQHDUfHggow5oB0vuaAhHQJXms9Mbm2d1fZQoaAZHQHFoJ97WuoxoB0vIaAhHQJXmzaxoqTd1fZQoaAZHQHJUG2TgVGloB0vuaAhHQJXnYZzgdfd1fZQoaAZHQHIDyidrftRoB0vTaAhHQJXnabiIcip1fZQoaAZHQGOONtygf2doB03oA2gIR0CV6Fvc8DB/dX2UKGgGR0BxbhbwBo25aAdL5GgIR0CV6OwOe8PGdX2UKGgGR0Blkq6jFhoeaAdN6ANoCEdAlekvP1L8JnV9lChoBkdAcuSCMPz4DmgHTQQBaAhHQJXpSIWP91l1fZQoaAZHQHGKFVxS5y5oB0v7aAhHQJXsuKyfL9x1fZQoaAZHQHFz4lyBCldoB0vSaAhHQJXsy+PBBRh1fZQoaAZHQG8Lg2ZRbbFoB0vPaAhHQJXuJwkxASp1fZQoaAZHQHLpRQizLOloB0v4aAhHQJXuJobn5i51fZQoaAZHQHA/vDDTBqNoB0vjaAhHQJXuRaX8fmt1fZQoaAZHQHIiwaaTfSBoB0vpaAhHQJXuiWv8qF11fZQoaAZHQGPJ75dnkDJoB03oA2gIR0CV7pqptJnQdX2UKGgGR0BxfjGS6lLwaAdL4WgIR0CV7rfdhy80dX2UKGgGR0Buhs9hZyMlaAdNQAFoCEdAle7fQSi/PHV9lChoBkdAcKc6j3225WgHS81oCEdAle+A7cO9WnV9lChoBkdAcd/nVoYek2gHS/loCEdAlfA0fcN6PnV9lChoBkdAcd7npSrHVGgHTRcBaAhHQJXyDUWl/H51fZQoaAZHQGAOkxh2GItoB03oA2gIR0CV87dhy8zzdX2UKGgGR0Bwogw35vcaaAdL+2gIR0CV9JYDklu4dX2UKGgGR0BwfsfeUILPaAdL2GgIR0CV9LyWRigCdX2UKGgGR0Bwue7cwg1WaAdL2GgIR0CV9NnX/YJ3dX2UKGgGR0BqmUKVpsXSaAdNDQFoCEdAlfU5dWyTp3V9lChoBkdAbZkGD+R5kmgHS99oCEdAlfV7GWD6FnV9lChoBkdAcGmNGEwnIGgHS+toCEdAlfWtq59Vm3V9lChoBkdAcZzbBGhEjWgHS+loCEdAlfWuAqd6LXV9lChoBkdAcEyKvV3EAGgHS+RoCEdAlfXNyT6i03V9lChoBkdAcf21XeWOZWgHTREBaAhHQJX2biEQGwB1fZQoaAZHQFzVN0/4ZdhoB03oA2gIR0CV9s7OVxCIdX2UKGgGR0BwXmNo8IRiaAdL+mgIR0CV9wnK4hECdX2UKGgGR0ByN3D50r9VaAdLzWgIR0CV9/cHnlnzdX2UKGgGR0Bw/Dp5eJHiaAdL3mgIR0CV+cgVGkN4dX2UKGgGR0BydKI/JNj9aAdL3mgIR0CV+sFVDKHPdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffb1e2d40511cdb4324d8bb1a09a56577b0a537ae7003011f57020b317f6ceac
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:912b755b0764ce68fa2ba75db8bff9bf44bdaa619bd0f20f883d35a2045bdb3d
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
2
+ - Python: 3.11.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.6.0+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 2.0.2
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84bf2e678e39eff27d5969a9eeaac2f00a92f78d7dfdceaf7cf4110f33b5bd36
3
+ size 156059
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 266.3641248, "std_reward": 21.547275792091998, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-05-16T14:01:24.423812"}