Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
language:
|
4 |
- en
|
5 |
base_model:
|
@@ -24,6 +24,49 @@ This model is fine-tuned for **NSFW image classification**. It classifies conten
|
|
24 |
|
25 |
---
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
## 🧠 Model Details
|
28 |
|
29 |
* **Base model**: `google/siglip2-base-patch16-224`
|
@@ -58,35 +101,6 @@ id2label = {0: 'gore_bloodshed_violent', 1: 'nudity_pornography', 2: 'safe_norma
|
|
58 |
```
|
59 |
---
|
60 |
|
61 |
-
## 🚀 Usage Example
|
62 |
-
|
63 |
-
```python
|
64 |
-
import torch
|
65 |
-
from transformers import AutoImageProcessor, SiglipForImageClassification
|
66 |
-
from PIL import Image
|
67 |
-
import torch.nn.functional as F
|
68 |
-
|
69 |
-
model_path = "Ateeqq/nsfw-image-detection"
|
70 |
-
processor = AutoImageProcessor.from_pretrained(model_path)
|
71 |
-
model = SiglipForImageClassification.from_pretrained(model_path)
|
72 |
-
|
73 |
-
image = Image.open("your_image_path.jpg").convert("RGB")
|
74 |
-
inputs = processor(images=image, return_tensors="pt")
|
75 |
-
|
76 |
-
with torch.no_grad():
|
77 |
-
logits = model(**inputs).logits
|
78 |
-
probs = F.softmax(logits, dim=1)
|
79 |
-
|
80 |
-
predicted_class_id = logits.argmax().item()
|
81 |
-
predicted_class = model.config.id2label[predicted_class_id]
|
82 |
-
|
83 |
-
print(f"Predicted class: {predicted_class}")
|
84 |
-
for i, score in enumerate(probs[0]):
|
85 |
-
print(f"{model.config.id2label[i]}: {score:.8f}")
|
86 |
-
```
|
87 |
-
|
88 |
-
---
|
89 |
-
|
90 |
## 📊 Training Metrics (Epoch 5 Selected ✅)
|
91 |
|
92 |
| Epoch | Training Loss | Validation Loss | Accuracy |
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
5 |
base_model:
|
|
|
24 |
|
25 |
---
|
26 |
|
27 |
+
## 🚀 Usage Example
|
28 |
+
|
29 |
+
```python
|
30 |
+
import torch
|
31 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
32 |
+
from PIL import Image
|
33 |
+
import torch.nn.functional as F
|
34 |
+
|
35 |
+
model_path = "Ateeqq/nsfw-image-detection"
|
36 |
+
processor = AutoImageProcessor.from_pretrained(model_path)
|
37 |
+
model = SiglipForImageClassification.from_pretrained(model_path)
|
38 |
+
|
39 |
+
image_path = r"/content/download.jpg"
|
40 |
+
image = Image.open(image_path).convert("RGB")
|
41 |
+
inputs = processor(images=image, return_tensors="pt")
|
42 |
+
|
43 |
+
with torch.no_grad():
|
44 |
+
logits = model(**inputs).logits
|
45 |
+
probabilities = F.softmax(logits, dim=1)
|
46 |
+
|
47 |
+
predicted_class_id = logits.argmax().item()
|
48 |
+
predicted_class_label = model.config.id2label[predicted_class_id]
|
49 |
+
confidence_scores = probabilities[0].tolist()
|
50 |
+
|
51 |
+
print(f"Predicted class ID: {predicted_class_id}")
|
52 |
+
print(f"Predicted class label: {predicted_class_label}\n")
|
53 |
+
for i, score in enumerate(confidence_scores):
|
54 |
+
label = model.config.id2label[i]
|
55 |
+
print(f"Confidence for '{label}': {score:.6f}")
|
56 |
+
```
|
57 |
+
|
58 |
+
## Output
|
59 |
+
```
|
60 |
+
Predicted class ID: 2
|
61 |
+
Predicted class label: safe_normal
|
62 |
+
|
63 |
+
Confidence for 'gore_bloodshed_violent': 0.000002
|
64 |
+
Confidence for 'nudity_pornography': 0.000005
|
65 |
+
Confidence for 'safe_normal': 0.999993
|
66 |
+
```
|
67 |
+
|
68 |
+
---
|
69 |
+
|
70 |
## 🧠 Model Details
|
71 |
|
72 |
* **Base model**: `google/siglip2-base-patch16-224`
|
|
|
101 |
```
|
102 |
---
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
## 📊 Training Metrics (Epoch 5 Selected ✅)
|
105 |
|
106 |
| Epoch | Training Loss | Validation Loss | Accuracy |
|