File size: 3,035 Bytes
43251d4 4e253e9 b32ffdd c10009b 7957232 4e253e9 bcdb661 b32ffdd 252c0c9 b7d75f5 43251d4 4e253e9 78e272c 899b715 4e253e9 78e272c 3f23add 4e253e9 3f23add 43251d4 b7d75f5 43251d4 252c0c9 b7d75f5 bd3e58f 252c0c9 b7d75f5 252c0c9 43251d4 da52d2c 43251d4 b5f41e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: openrail
inference:
parameters:
num_beams: 3
num_beam_groups: 3
num_return_sequences: 1
repetition_penalty: 3
diversity_penalty: 3.01
no_repeat_ngram_size: 2
temperature: 0.8
max_length: 64
widget:
- text: >-
paraphraser: Learn to build generative AI applications with an expert AWS
instructor with the 2-day Developing Generative AI Applications on AWS
course.
example_title: AWS course
- text: >-
paraphraser: In healthcare, Generative AI can help generate synthetic
medical data to train machine learning models, develop new drug candidates,
and design clinical trials.
example_title: Generative AI
- text: >-
paraphraser: By leveraging prior model training through transfer learning,
fine-tuning can reduce the amount of expensive computing power and labeled
data needed to obtain large models tailored to niche use cases and business
needs.
example_title: Fine Tuning
---
# Text Rewriter Paraphraser
This repository contains a fine-tuned text-rewriting model based on the T5-Base with 223M parameters.
Developed by: https://exnrt.com
## Key Features:
* **Fine-tuned on t5-base:** Leverages the power of a pre-trained text-to-text transfer model for effective paraphrasing.
* **Large Dataset (430k examples):** Trained on a comprehensive dataset combining three open-source sources and cleaned using various techniques for optimal performance.
* **High Quality Paraphrases:** Generates paraphrases that significantly alter sentence structure while maintaining accuracy and factual correctness.
* **Non-AI Detectable:** Aims to produce paraphrases that appear natural and indistinguishable from human-written text.
**Model Performance:**
* Train Loss: 1.0645
* Validation Loss: 0.8761
## Getting Started:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Replace 'YOUR_TOKEN' with your actual Hugging Face access token
tokenizer = AutoTokenizer.from_pretrained("Ateeqq/Text-Rewriter-Paraphraser", token='YOUR_TOKEN')
model = AutoModelForSeq2SeqLM.from_pretrained("Ateeqq/Text-Rewriter-Paraphraser", token='YOUR_TOKEN')
text = "paraphraser:" + "Data science is a field that deals with extracting knowledge and insights from data. "
inputs = tokenizer(text, return_tensors="pt")
output = model.generate(**inputs, max_length=64)
print(tokenizer.decode(output[0]))
```
**Disclaimer:**
* Limited Use: It grants a non-exclusive, non-transferable license to use the this model same as Llama-3. This means you can't freely share it with others or sell the model itself.
* Commercial Use Allowed: You can use the model for commercial purposes, but under the terms of the license agreement.
* Attribution Required: You need to abide by the agreement's terms regarding attribution. It is essential to use the paraphrased text responsibly and ethically, with proper attribution of the original source.
**Further Development:**
(Mention any ongoing development or areas for future improvement in Discussions.) |