File size: 5,260 Bytes
0fb6d3c
50fd814
0fb6d3c
50fd814
 
 
 
 
0fb6d3c
50fd814
 
 
 
 
 
 
 
 
 
 
0fb6d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bccfc28
0fb6d3c
 
 
 
 
 
 
 
 
 
 
 
50fd814
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
license: mit
tags:
- vision-language
- mixture-of-experts
- text-generation
- vision-transformer
- pytorch
model_index:
- name: SparseFusion
  results:
  - task:
      type: text-generation
    dataset:
      name: Custom Caption Dataset
      type: custom
    metrics:
    - name: Validation Loss
      type: loss
      value: 0.8
---

# SparseFusion

**SparseFusion** is a multimodal Mixture-of-Experts (MoE) model integrating a Vision Transformer (ViT) and transformer decoder for image-conditioned text generation. It is built entirely in PyTorch and extends [SeeMOE](https://github.com/AviSoori1x/seemore).

---

## 🧠 Model Details

- **Name**: SparseFusion  
- **Author**: Derrick Kirimi ([GitHub](https://github.com/DerrickKirimi) · [LinkedIn](https://www.linkedin.com/in/derrick-kirimi-22a470175/) · [Hugging Face](https://huggingface.co/Aptheos))  
- **Model Type**: Vision-Language Model  
- **Architecture**:
  - Vision Encoder: ViT (96×96 images, 16×16 patches, 512-dim patch embeddings)
  - Decoder: Transformer with MoE layers (8 layers, 128-dim, 8 heads)
  - MoE Setup: 8 experts, top-2 routing, expert capacity control
  - Token Fusion: Concatenation of image tokens and character-level encoded text  
- **License**: Apache 2.0  
- **Repository**: [GitHub - DerrickKirimi/SparseFusion](https://github.com/DerrickKirimi/SparseFusion)

---

## 🌟 Intended Use

- **Primary Use Case**: Image-conditioned text generation for educational and research experimentation  
- **Intended Users**: ML researchers, students, developers  
- **Out-of-Scope Uses**: Not suitable for deployment in production or for generating harmful content

---

## 🏋️‍♂️ Training & Evaluation

### 📅 Dataset

- **Text**: Tiny Shakespeare (character-level)
- **Images**: 300 synthetic image-caption pairs

### ⚙️ Training

- Trained for 2 epochs on **Google Colab (1 GPU, 12 GB VRAM)**
- Logging via **Weights & Biases (wandb)**

### 📊 Hyperparameters

```yaml
epochs: 2
batch_size: 16
learning_rate: 0.001
n_embd: 128
n_head: 8
n_layer: 8
num_experts: 8
top_k: 2
expert_capacity: 32
img_size: 96
patch_size: 16
```

### 📈 Evaluation

- **Validation Loss**: 0.8 after 2 epochs  
- **Summary**:
  - Generates basic coherent text  
  - Shows 15% improvement in expert utilization with routing control and load balancing

---

## 🚀 Usage

### 📦 Installation

```bash
pip install torch torchvision transformers huggingface_hub wandb
```

### 🔄 Inference

```python
import torch
import pickle
from PIL import Image
import torchvision.transforms as transforms
from huggingface_hub import hf_hub_download

# Load vocabulary mappings
stoi = pickle.load(open(hf_hub_download("Aptheos/SparseFusion", "stoi.pkl"), "rb"))
itos = pickle.load(open(hf_hub_download("Aptheos/SparseFusion", "itos.pkl"), "rb"))
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])

# Define model architecture
model = VisionMoELanguageModel(
    n_embd=128, image_embed_dim=512, vocab_size=len(stoi), n_layer=8,
    img_size=96, patch_size=16, num_heads=8, num_blks=3,
    emb_dropout=0.1, blk_dropout=0.1, num_experts=8, top_k=2, expert_capacity=32
)
model.load_state_dict(torch.load(hf_hub_download("Aptheos/SparseFusion", "vision_moe_model.pth")))
model.eval().to("cuda")

# Preprocess image
transform = transforms.Compose([
    transforms.Resize((96, 96)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(Image.open("example.jpg")).unsqueeze(0).to("cuda")
prompt = torch.tensor([encode("A photo of")], dtype=torch.long).to("cuda")

# Generate text
generated = model.generate(image, prompt, max_new_tokens=50)
print(decode(generated[0].tolist()))
```

To run on CPU:

```python
model.eval().to("cpu")
image = image.to("cpu")
prompt = prompt.to("cpu")
```

---

## ⚠️ Limitations & Biases

### Limitations

- The model generates incoherent text (e.g., `"A photo ofiecp ntti<pad><pad>..."`) due to training on a small, synthetic dataset of 300 identical images with simplistic captions.
- Vision encoder (ViT) is **not pre-trained**, reducing visual feature quality.
- Character-level tokenization limits text fluency and introduces `<pad>` tokens.
- Limited training time (2 epochs) restricts deep multimodal learning.

### Biases

- Synthetic captions create bias toward repetitive language structures.
- Lack of diverse image inputs may bias the model’s visual representation.

---

## 🔭 Future Work

- Train on larger datasets (e.g., COCO, Flickr30k) for better generalization
- Use pre-trained ViT backbone (e.g., `timm/vit_small_patch16_224`)
- Implement subword tokenization (e.g., SentencePiece, BPE)
- Add modality type embeddings and rotary positional embeddings (RoPE)
- Visualize expert routing and attention patterns for interpretability
- Increase training epochs and perform hyperparameter tuning

---

## 📄 License

Licensed under the **MIT License** for open research and educational use.

---

## 📚 Citation

```bibtex
@misc{sparsefusion2025,
  author = {Derrick Kirimi},
  title = {SparseFusion: A Multimodal Mixture-of-Experts Model},
  year = {2025},
  url = {https://huggingface.co/Aptheos/SparseFusion}
}
```