Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- attention.py +122 -0
- clip.py +96 -0
- ddpm.py +123 -0
- decoder.py +177 -0
- demo.py +67 -0
- diffusion.py +349 -0
- encoder.py +103 -0
- model_converter.py +0 -0
- model_loader.py +28 -0
- output.png +3 -0
- pipeline.py +170 -0
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
main/output.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
main/output.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
output.png filter=lfs diff=lfs merge=lfs -text
|
attention.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
class SelfAttention(nn.Module):
|
| 7 |
+
def __init__(self, n_heads, d_embed, in_proj_bias=True, out_proj_bias=True):
|
| 8 |
+
super().__init__()
|
| 9 |
+
# This combines the Wq, Wk and Wv matrices into one matrix
|
| 10 |
+
self.in_proj = nn.Linear(d_embed, 3 * d_embed, bias=in_proj_bias)
|
| 11 |
+
# This one represents the Wo matrix
|
| 12 |
+
self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias)
|
| 13 |
+
self.n_heads = n_heads
|
| 14 |
+
self.d_head = d_embed // n_heads
|
| 15 |
+
|
| 16 |
+
def forward(self, x, causal_mask=False):
|
| 17 |
+
# x: # (Batch_Size, Seq_Len, Dim)
|
| 18 |
+
|
| 19 |
+
# (Batch_Size, Seq_Len, Dim)
|
| 20 |
+
input_shape = x.shape
|
| 21 |
+
|
| 22 |
+
# (Batch_Size, Seq_Len, Dim)
|
| 23 |
+
batch_size, sequence_length, d_embed = input_shape
|
| 24 |
+
|
| 25 |
+
# (Batch_Size, Seq_Len, H, Dim / H)
|
| 26 |
+
interim_shape = (batch_size, sequence_length, self.n_heads, self.d_head)
|
| 27 |
+
|
| 28 |
+
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim * 3) -> 3 tensor of shape (Batch_Size, Seq_Len, Dim)
|
| 29 |
+
q, k, v = self.in_proj(x).chunk(3, dim=-1)
|
| 30 |
+
|
| 31 |
+
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, H, Dim / H) -> (Batch_Size, H, Seq_Len, Dim / H)
|
| 32 |
+
q = q.view(interim_shape).transpose(1, 2)
|
| 33 |
+
k = k.view(interim_shape).transpose(1, 2)
|
| 34 |
+
v = v.view(interim_shape).transpose(1, 2)
|
| 35 |
+
|
| 36 |
+
# (Batch_Size, H, Seq_Len, Dim / H) @ (Batch_Size, H, Dim / H, Seq_Len) -> (Batch_Size, H, Seq_Len, Seq_Len)
|
| 37 |
+
weight = q @ k.transpose(-1, -2)
|
| 38 |
+
|
| 39 |
+
if causal_mask:
|
| 40 |
+
# Mask where the upper triangle (above the principal diagonal) is 1
|
| 41 |
+
mask = torch.ones_like(weight, dtype=torch.bool).triu(1)
|
| 42 |
+
# Fill the upper triangle with -inf
|
| 43 |
+
weight.masked_fill_(mask, -torch.inf)
|
| 44 |
+
|
| 45 |
+
# Divide by d_k (Dim / H).
|
| 46 |
+
# (Batch_Size, H, Seq_Len, Seq_Len) -> (Batch_Size, H, Seq_Len, Seq_Len)
|
| 47 |
+
weight /= math.sqrt(self.d_head)
|
| 48 |
+
|
| 49 |
+
# (Batch_Size, H, Seq_Len, Seq_Len) -> (Batch_Size, H, Seq_Len, Seq_Len)
|
| 50 |
+
weight = F.softmax(weight, dim=-1)
|
| 51 |
+
|
| 52 |
+
# (Batch_Size, H, Seq_Len, Seq_Len) @ (Batch_Size, H, Seq_Len, Dim / H) -> (Batch_Size, H, Seq_Len, Dim / H)
|
| 53 |
+
output = weight @ v
|
| 54 |
+
|
| 55 |
+
# (Batch_Size, H, Seq_Len, Dim / H) -> (Batch_Size, Seq_Len, H, Dim / H)
|
| 56 |
+
output = output.transpose(1, 2)
|
| 57 |
+
|
| 58 |
+
# (Batch_Size, Seq_Len, H, Dim / H) -> (Batch_Size, Seq_Len, Dim)
|
| 59 |
+
output = output.reshape(input_shape)
|
| 60 |
+
|
| 61 |
+
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim)
|
| 62 |
+
output = self.out_proj(output)
|
| 63 |
+
|
| 64 |
+
# (Batch_Size, Seq_Len, Dim)
|
| 65 |
+
return output
|
| 66 |
+
|
| 67 |
+
class CrossAttention(nn.Module):
|
| 68 |
+
def __init__(self, n_heads, d_embed, d_cross, in_proj_bias=True, out_proj_bias=True):
|
| 69 |
+
super().__init__()
|
| 70 |
+
self.q_proj = nn.Linear(d_embed, d_embed, bias=in_proj_bias)
|
| 71 |
+
self.k_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
|
| 72 |
+
self.v_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
|
| 73 |
+
self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias)
|
| 74 |
+
self.n_heads = n_heads
|
| 75 |
+
self.d_head = d_embed // n_heads
|
| 76 |
+
|
| 77 |
+
def forward(self, x, y):
|
| 78 |
+
# x (latent): # (Batch_Size, Seq_Len_Q, Dim_Q)
|
| 79 |
+
# y (context): # (Batch_Size, Seq_Len_KV, Dim_KV) = (Batch_Size, 77, 768)
|
| 80 |
+
|
| 81 |
+
input_shape = x.shape
|
| 82 |
+
batch_size, sequence_length, d_embed = input_shape
|
| 83 |
+
# Divide each embedding of Q into multiple heads such that d_heads * n_heads = Dim_Q
|
| 84 |
+
interim_shape = (batch_size, -1, self.n_heads, self.d_head)
|
| 85 |
+
|
| 86 |
+
# (Batch_Size, Seq_Len_Q, Dim_Q) -> (Batch_Size, Seq_Len_Q, Dim_Q)
|
| 87 |
+
q = self.q_proj(x)
|
| 88 |
+
# (Batch_Size, Seq_Len_KV, Dim_KV) -> (Batch_Size, Seq_Len_KV, Dim_Q)
|
| 89 |
+
k = self.k_proj(y)
|
| 90 |
+
# (Batch_Size, Seq_Len_KV, Dim_KV) -> (Batch_Size, Seq_Len_KV, Dim_Q)
|
| 91 |
+
v = self.v_proj(y)
|
| 92 |
+
|
| 93 |
+
# (Batch_Size, Seq_Len_Q, Dim_Q) -> (Batch_Size, Seq_Len_Q, H, Dim_Q / H) -> (Batch_Size, H, Seq_Len_Q, Dim_Q / H)
|
| 94 |
+
q = q.view(interim_shape).transpose(1, 2)
|
| 95 |
+
# (Batch_Size, Seq_Len_KV, Dim_Q) -> (Batch_Size, Seq_Len_KV, H, Dim_Q / H) -> (Batch_Size, H, Seq_Len_KV, Dim_Q / H)
|
| 96 |
+
k = k.view(interim_shape).transpose(1, 2)
|
| 97 |
+
# (Batch_Size, Seq_Len_KV, Dim_Q) -> (Batch_Size, Seq_Len_KV, H, Dim_Q / H) -> (Batch_Size, H, Seq_Len_KV, Dim_Q / H)
|
| 98 |
+
v = v.view(interim_shape).transpose(1, 2)
|
| 99 |
+
|
| 100 |
+
# (Batch_Size, H, Seq_Len_Q, Dim_Q / H) @ (Batch_Size, H, Dim_Q / H, Seq_Len_KV) -> (Batch_Size, H, Seq_Len_Q, Seq_Len_KV)
|
| 101 |
+
weight = q @ k.transpose(-1, -2)
|
| 102 |
+
|
| 103 |
+
# (Batch_Size, H, Seq_Len_Q, Seq_Len_KV)
|
| 104 |
+
weight /= math.sqrt(self.d_head)
|
| 105 |
+
|
| 106 |
+
# (Batch_Size, H, Seq_Len_Q, Seq_Len_KV)
|
| 107 |
+
weight = F.softmax(weight, dim=-1)
|
| 108 |
+
|
| 109 |
+
# (Batch_Size, H, Seq_Len_Q, Seq_Len_KV) @ (Batch_Size, H, Seq_Len_KV, Dim_Q / H) -> (Batch_Size, H, Seq_Len_Q, Dim_Q / H)
|
| 110 |
+
output = weight @ v
|
| 111 |
+
|
| 112 |
+
# (Batch_Size, H, Seq_Len_Q, Dim_Q / H) -> (Batch_Size, Seq_Len_Q, H, Dim_Q / H)
|
| 113 |
+
output = output.transpose(1, 2).contiguous()
|
| 114 |
+
|
| 115 |
+
# (Batch_Size, Seq_Len_Q, H, Dim_Q / H) -> (Batch_Size, Seq_Len_Q, Dim_Q)
|
| 116 |
+
output = output.view(input_shape)
|
| 117 |
+
|
| 118 |
+
# (Batch_Size, Seq_Len_Q, Dim_Q) -> (Batch_Size, Seq_Len_Q, Dim_Q)
|
| 119 |
+
output = self.out_proj(output)
|
| 120 |
+
|
| 121 |
+
# (Batch_Size, Seq_Len_Q, Dim_Q)
|
| 122 |
+
return output
|
clip.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
from attention import SelfAttention
|
| 5 |
+
|
| 6 |
+
class CLIPEmbedding(nn.Module):
|
| 7 |
+
def __init__(self, n_vocab: int, n_embd: int, n_token: int):
|
| 8 |
+
super().__init__()
|
| 9 |
+
|
| 10 |
+
self.token_embedding = nn.Embedding(n_vocab, n_embd)
|
| 11 |
+
# A learnable weight matrix encodes the position information for each token
|
| 12 |
+
self.position_embedding = nn.Parameter(torch.zeros((n_token, n_embd)))
|
| 13 |
+
|
| 14 |
+
def forward(self, tokens):
|
| 15 |
+
# (Batch_Size, Seq_Len) -> (Batch_Size, Seq_Len, Dim)
|
| 16 |
+
x = self.token_embedding(tokens)
|
| 17 |
+
# (Batch_Size, Seq_Len) -> (Batch_Size, Seq_Len, Dim)
|
| 18 |
+
x += self.position_embedding
|
| 19 |
+
|
| 20 |
+
return x
|
| 21 |
+
|
| 22 |
+
class CLIPLayer(nn.Module):
|
| 23 |
+
def __init__(self, n_head: int, n_embd: int):
|
| 24 |
+
super().__init__()
|
| 25 |
+
|
| 26 |
+
# Pre-attention norm
|
| 27 |
+
self.layernorm_1 = nn.LayerNorm(n_embd)
|
| 28 |
+
# Self attention
|
| 29 |
+
self.attention = SelfAttention(n_head, n_embd)
|
| 30 |
+
# Pre-FNN norm
|
| 31 |
+
self.layernorm_2 = nn.LayerNorm(n_embd)
|
| 32 |
+
# Feedforward layer
|
| 33 |
+
self.linear_1 = nn.Linear(n_embd, 4 * n_embd)
|
| 34 |
+
self.linear_2 = nn.Linear(4 * n_embd, n_embd)
|
| 35 |
+
|
| 36 |
+
def forward(self, x):
|
| 37 |
+
# (Batch_Size, Seq_Len, Dim)
|
| 38 |
+
residue = x
|
| 39 |
+
|
| 40 |
+
### SELF ATTENTION ###
|
| 41 |
+
|
| 42 |
+
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim)
|
| 43 |
+
x = self.layernorm_1(x)
|
| 44 |
+
|
| 45 |
+
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim)
|
| 46 |
+
x = self.attention(x, causal_mask=True)
|
| 47 |
+
|
| 48 |
+
# (Batch_Size, Seq_Len, Dim) + (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim)
|
| 49 |
+
x += residue
|
| 50 |
+
|
| 51 |
+
### FEEDFORWARD LAYER ###
|
| 52 |
+
# Apply a feedforward layer where the hidden dimension is 4 times the embedding dimension.
|
| 53 |
+
|
| 54 |
+
residue = x
|
| 55 |
+
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim)
|
| 56 |
+
x = self.layernorm_2(x)
|
| 57 |
+
|
| 58 |
+
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, 4 * Dim)
|
| 59 |
+
x = self.linear_1(x)
|
| 60 |
+
|
| 61 |
+
# (Batch_Size, Seq_Len, 4 * Dim) -> (Batch_Size, Seq_Len, 4 * Dim)
|
| 62 |
+
x = x * torch.sigmoid(1.702 * x) # QuickGELU activation function
|
| 63 |
+
|
| 64 |
+
# (Batch_Size, Seq_Len, 4 * Dim) -> (Batch_Size, Seq_Len, Dim)
|
| 65 |
+
x = self.linear_2(x)
|
| 66 |
+
|
| 67 |
+
# (Batch_Size, Seq_Len, Dim) + (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim)
|
| 68 |
+
x += residue
|
| 69 |
+
|
| 70 |
+
return x
|
| 71 |
+
|
| 72 |
+
class CLIP(nn.Module):
|
| 73 |
+
def __init__(self):
|
| 74 |
+
super().__init__()
|
| 75 |
+
self.embedding = CLIPEmbedding(49408, 768, 77)
|
| 76 |
+
|
| 77 |
+
self.layers = nn.ModuleList([
|
| 78 |
+
CLIPLayer(12, 768) for i in range(12)
|
| 79 |
+
])
|
| 80 |
+
|
| 81 |
+
self.layernorm = nn.LayerNorm(768)
|
| 82 |
+
|
| 83 |
+
def forward(self, tokens: torch.LongTensor) -> torch.FloatTensor:
|
| 84 |
+
tokens = tokens.type(torch.long)
|
| 85 |
+
|
| 86 |
+
# (Batch_Size, Seq_Len) -> (Batch_Size, Seq_Len, Dim)
|
| 87 |
+
state = self.embedding(tokens)
|
| 88 |
+
|
| 89 |
+
# Apply encoder layers similar to the Transformer's encoder.
|
| 90 |
+
for layer in self.layers:
|
| 91 |
+
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim)
|
| 92 |
+
state = layer(state)
|
| 93 |
+
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim)
|
| 94 |
+
output = self.layernorm(state)
|
| 95 |
+
|
| 96 |
+
return output
|
ddpm.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
class DDPMSampler:
|
| 5 |
+
|
| 6 |
+
def __init__(self, generator: torch.Generator, num_training_steps=1000, beta_start: float = 0.00085, beta_end: float = 0.0120):
|
| 7 |
+
# Params "beta_start" and "beta_end" taken from: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/configs/stable-diffusion/v1-inference.yaml#L5C8-L5C8
|
| 8 |
+
# For the naming conventions, refer to the DDPM paper (https://arxiv.org/pdf/2006.11239.pdf)
|
| 9 |
+
self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_training_steps, dtype=torch.float32) ** 2
|
| 10 |
+
self.alphas = 1.0 - self.betas
|
| 11 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
| 12 |
+
self.one = torch.tensor(1.0)
|
| 13 |
+
|
| 14 |
+
self.generator = generator
|
| 15 |
+
|
| 16 |
+
self.num_train_timesteps = num_training_steps
|
| 17 |
+
self.timesteps = torch.from_numpy(np.arange(0, num_training_steps)[::-1].copy())
|
| 18 |
+
|
| 19 |
+
def set_inference_timesteps(self, num_inference_steps=50):
|
| 20 |
+
self.num_inference_steps = num_inference_steps
|
| 21 |
+
step_ratio = self.num_train_timesteps // self.num_inference_steps
|
| 22 |
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
| 23 |
+
self.timesteps = torch.from_numpy(timesteps)
|
| 24 |
+
|
| 25 |
+
def _get_previous_timestep(self, timestep: int) -> int:
|
| 26 |
+
prev_t = timestep - self.num_train_timesteps // self.num_inference_steps
|
| 27 |
+
return prev_t
|
| 28 |
+
|
| 29 |
+
def _get_variance(self, timestep: int) -> torch.Tensor:
|
| 30 |
+
prev_t = self._get_previous_timestep(timestep)
|
| 31 |
+
|
| 32 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
| 33 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
|
| 34 |
+
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
|
| 35 |
+
|
| 36 |
+
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
|
| 37 |
+
# and sample from it to get previous sample
|
| 38 |
+
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
|
| 39 |
+
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
|
| 40 |
+
|
| 41 |
+
# we always take the log of variance, so clamp it to ensure it's not 0
|
| 42 |
+
variance = torch.clamp(variance, min=1e-20)
|
| 43 |
+
|
| 44 |
+
return variance
|
| 45 |
+
|
| 46 |
+
def set_strength(self, strength=1):
|
| 47 |
+
"""
|
| 48 |
+
Set how much noise to add to the input image.
|
| 49 |
+
More noise (strength ~ 1) means that the output will be further from the input image.
|
| 50 |
+
Less noise (strength ~ 0) means that the output will be closer to the input image.
|
| 51 |
+
"""
|
| 52 |
+
# start_step is the number of noise levels to skip
|
| 53 |
+
start_step = self.num_inference_steps - int(self.num_inference_steps * strength)
|
| 54 |
+
self.timesteps = self.timesteps[start_step:]
|
| 55 |
+
self.start_step = start_step
|
| 56 |
+
|
| 57 |
+
def step(self, timestep: int, latents: torch.Tensor, model_output: torch.Tensor):
|
| 58 |
+
t = timestep
|
| 59 |
+
prev_t = self._get_previous_timestep(t)
|
| 60 |
+
|
| 61 |
+
# 1. compute alphas, betas
|
| 62 |
+
alpha_prod_t = self.alphas_cumprod[t]
|
| 63 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
|
| 64 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 65 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 66 |
+
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
|
| 67 |
+
current_beta_t = 1 - current_alpha_t
|
| 68 |
+
|
| 69 |
+
# 2. compute predicted original sample from predicted noise also called
|
| 70 |
+
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
|
| 71 |
+
pred_original_sample = (latents - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
| 72 |
+
|
| 73 |
+
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
| 74 |
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
| 75 |
+
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
|
| 76 |
+
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
|
| 77 |
+
|
| 78 |
+
# 5. Compute predicted previous sample µ_t
|
| 79 |
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
| 80 |
+
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * latents
|
| 81 |
+
|
| 82 |
+
# 6. Add noise
|
| 83 |
+
variance = 0
|
| 84 |
+
if t > 0:
|
| 85 |
+
device = model_output.device
|
| 86 |
+
noise = torch.randn(model_output.shape, generator=self.generator, device=device, dtype=model_output.dtype)
|
| 87 |
+
# Compute the variance as per formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
| 88 |
+
variance = (self._get_variance(t) ** 0.5) * noise
|
| 89 |
+
|
| 90 |
+
# sample from N(mu, sigma) = X can be obtained by X = mu + sigma * N(0, 1)
|
| 91 |
+
# the variable "variance" is already multiplied by the noise N(0, 1)
|
| 92 |
+
pred_prev_sample = pred_prev_sample + variance
|
| 93 |
+
|
| 94 |
+
return pred_prev_sample
|
| 95 |
+
|
| 96 |
+
def add_noise(
|
| 97 |
+
self,
|
| 98 |
+
original_samples: torch.FloatTensor,
|
| 99 |
+
timesteps: torch.IntTensor,
|
| 100 |
+
) -> torch.FloatTensor:
|
| 101 |
+
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
| 102 |
+
timesteps = timesteps.to(original_samples.device)
|
| 103 |
+
|
| 104 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
| 105 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
| 106 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
| 107 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
| 108 |
+
|
| 109 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
| 110 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
| 111 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
| 112 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
| 113 |
+
|
| 114 |
+
# Sample from q(x_t | x_0) as in equation (4) of https://arxiv.org/pdf/2006.11239.pdf
|
| 115 |
+
# Because N(mu, sigma) = X can be obtained by X = mu + sigma * N(0, 1)
|
| 116 |
+
# here mu = sqrt_alpha_prod * original_samples and sigma = sqrt_one_minus_alpha_prod
|
| 117 |
+
noise = torch.randn(original_samples.shape, generator=self.generator, device=original_samples.device, dtype=original_samples.dtype)
|
| 118 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
| 119 |
+
return noisy_samples
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
decoder.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
from attention import SelfAttention
|
| 5 |
+
|
| 6 |
+
class VAE_AttentionBlock(nn.Module):
|
| 7 |
+
def __init__(self, channels):
|
| 8 |
+
super().__init__()
|
| 9 |
+
self.groupnorm = nn.GroupNorm(32, channels)
|
| 10 |
+
self.attention = SelfAttention(1, channels)
|
| 11 |
+
|
| 12 |
+
def forward(self, x):
|
| 13 |
+
# x: (Batch_Size, Features, Height, Width)
|
| 14 |
+
|
| 15 |
+
residue = x
|
| 16 |
+
|
| 17 |
+
# (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width)
|
| 18 |
+
x = self.groupnorm(x)
|
| 19 |
+
|
| 20 |
+
n, c, h, w = x.shape
|
| 21 |
+
|
| 22 |
+
# (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height * Width)
|
| 23 |
+
x = x.view((n, c, h * w))
|
| 24 |
+
|
| 25 |
+
# (Batch_Size, Features, Height * Width) -> (Batch_Size, Height * Width, Features). Each pixel becomes a feature of size "Features", the sequence length is "Height * Width".
|
| 26 |
+
x = x.transpose(-1, -2)
|
| 27 |
+
|
| 28 |
+
# Perform self-attention WITHOUT mask
|
| 29 |
+
# (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features)
|
| 30 |
+
x = self.attention(x)
|
| 31 |
+
|
| 32 |
+
# (Batch_Size, Height * Width, Features) -> (Batch_Size, Features, Height * Width)
|
| 33 |
+
x = x.transpose(-1, -2)
|
| 34 |
+
|
| 35 |
+
# (Batch_Size, Features, Height * Width) -> (Batch_Size, Features, Height, Width)
|
| 36 |
+
x = x.view((n, c, h, w))
|
| 37 |
+
|
| 38 |
+
# (Batch_Size, Features, Height, Width) + (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width)
|
| 39 |
+
x += residue
|
| 40 |
+
|
| 41 |
+
# (Batch_Size, Features, Height, Width)
|
| 42 |
+
return x
|
| 43 |
+
|
| 44 |
+
class VAE_ResidualBlock(nn.Module):
|
| 45 |
+
def __init__(self, in_channels, out_channels):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.groupnorm_1 = nn.GroupNorm(32, in_channels)
|
| 48 |
+
self.conv_1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
| 49 |
+
|
| 50 |
+
self.groupnorm_2 = nn.GroupNorm(32, out_channels)
|
| 51 |
+
self.conv_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
|
| 52 |
+
|
| 53 |
+
if in_channels == out_channels:
|
| 54 |
+
self.residual_layer = nn.Identity()
|
| 55 |
+
else:
|
| 56 |
+
self.residual_layer = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
|
| 57 |
+
|
| 58 |
+
def forward(self, x):
|
| 59 |
+
# x: (Batch_Size, In_Channels, Height, Width)
|
| 60 |
+
|
| 61 |
+
residue = x
|
| 62 |
+
|
| 63 |
+
# (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, In_Channels, Height, Width)
|
| 64 |
+
x = self.groupnorm_1(x)
|
| 65 |
+
|
| 66 |
+
# (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, In_Channels, Height, Width)
|
| 67 |
+
x = F.silu(x)
|
| 68 |
+
|
| 69 |
+
# (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
|
| 70 |
+
x = self.conv_1(x)
|
| 71 |
+
|
| 72 |
+
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
|
| 73 |
+
x = self.groupnorm_2(x)
|
| 74 |
+
|
| 75 |
+
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
|
| 76 |
+
x = F.silu(x)
|
| 77 |
+
|
| 78 |
+
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
|
| 79 |
+
x = self.conv_2(x)
|
| 80 |
+
|
| 81 |
+
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
|
| 82 |
+
return x + self.residual_layer(residue)
|
| 83 |
+
|
| 84 |
+
class VAE_Decoder(nn.Sequential):
|
| 85 |
+
def __init__(self):
|
| 86 |
+
super().__init__(
|
| 87 |
+
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
|
| 88 |
+
nn.Conv2d(4, 4, kernel_size=1, padding=0),
|
| 89 |
+
|
| 90 |
+
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 91 |
+
nn.Conv2d(4, 512, kernel_size=3, padding=1),
|
| 92 |
+
|
| 93 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 94 |
+
VAE_ResidualBlock(512, 512),
|
| 95 |
+
|
| 96 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 97 |
+
VAE_AttentionBlock(512),
|
| 98 |
+
|
| 99 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 100 |
+
VAE_ResidualBlock(512, 512),
|
| 101 |
+
|
| 102 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 103 |
+
VAE_ResidualBlock(512, 512),
|
| 104 |
+
|
| 105 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 106 |
+
VAE_ResidualBlock(512, 512),
|
| 107 |
+
|
| 108 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 109 |
+
VAE_ResidualBlock(512, 512),
|
| 110 |
+
|
| 111 |
+
# Repeats the rows and columns of the data by scale_factor (like when you resize an image by doubling its size).
|
| 112 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 4, Width / 4)
|
| 113 |
+
nn.Upsample(scale_factor=2),
|
| 114 |
+
|
| 115 |
+
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
|
| 116 |
+
nn.Conv2d(512, 512, kernel_size=3, padding=1),
|
| 117 |
+
|
| 118 |
+
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
|
| 119 |
+
VAE_ResidualBlock(512, 512),
|
| 120 |
+
|
| 121 |
+
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
|
| 122 |
+
VAE_ResidualBlock(512, 512),
|
| 123 |
+
|
| 124 |
+
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
|
| 125 |
+
VAE_ResidualBlock(512, 512),
|
| 126 |
+
|
| 127 |
+
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 2, Width / 2)
|
| 128 |
+
nn.Upsample(scale_factor=2),
|
| 129 |
+
|
| 130 |
+
# (Batch_Size, 512, Height / 2, Width / 2) -> (Batch_Size, 512, Height / 2, Width / 2)
|
| 131 |
+
nn.Conv2d(512, 512, kernel_size=3, padding=1),
|
| 132 |
+
|
| 133 |
+
# (Batch_Size, 512, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
|
| 134 |
+
VAE_ResidualBlock(512, 256),
|
| 135 |
+
|
| 136 |
+
# (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
|
| 137 |
+
VAE_ResidualBlock(256, 256),
|
| 138 |
+
|
| 139 |
+
# (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
|
| 140 |
+
VAE_ResidualBlock(256, 256),
|
| 141 |
+
|
| 142 |
+
# (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height, Width)
|
| 143 |
+
nn.Upsample(scale_factor=2),
|
| 144 |
+
|
| 145 |
+
# (Batch_Size, 256, Height, Width) -> (Batch_Size, 256, Height, Width)
|
| 146 |
+
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
| 147 |
+
|
| 148 |
+
# (Batch_Size, 256, Height, Width) -> (Batch_Size, 128, Height, Width)
|
| 149 |
+
VAE_ResidualBlock(256, 128),
|
| 150 |
+
|
| 151 |
+
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
|
| 152 |
+
VAE_ResidualBlock(128, 128),
|
| 153 |
+
|
| 154 |
+
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
|
| 155 |
+
VAE_ResidualBlock(128, 128),
|
| 156 |
+
|
| 157 |
+
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
|
| 158 |
+
nn.GroupNorm(32, 128),
|
| 159 |
+
|
| 160 |
+
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
|
| 161 |
+
nn.SiLU(),
|
| 162 |
+
|
| 163 |
+
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 3, Height, Width)
|
| 164 |
+
nn.Conv2d(128, 3, kernel_size=3, padding=1),
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
def forward(self, x):
|
| 168 |
+
# x: (Batch_Size, 4, Height / 8, Width / 8)
|
| 169 |
+
|
| 170 |
+
# Remove the scaling added by the Encoder.
|
| 171 |
+
x /= 0.18215
|
| 172 |
+
|
| 173 |
+
for module in self:
|
| 174 |
+
x = module(x)
|
| 175 |
+
|
| 176 |
+
# (Batch_Size, 3, Height, Width)
|
| 177 |
+
return x
|
demo.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import model_loader
|
| 2 |
+
import pipeline
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from transformers import CLIPTokenizer
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
DEVICE = "cpu"
|
| 9 |
+
|
| 10 |
+
ALLOW_CUDA = False
|
| 11 |
+
ALLOW_MPS = False
|
| 12 |
+
|
| 13 |
+
if torch.cuda.is_available() and ALLOW_CUDA:
|
| 14 |
+
DEVICE = "cuda"
|
| 15 |
+
elif (torch.has_mps or torch.backends.mps.is_available()) and ALLOW_MPS:
|
| 16 |
+
DEVICE = "mps"
|
| 17 |
+
print(f"Using device: {DEVICE}")
|
| 18 |
+
|
| 19 |
+
tokenizer = CLIPTokenizer("../data/vocab.json", merges_file="../data/merges.txt")
|
| 20 |
+
model_file = "../data/v1-5-pruned-emaonly.ckpt"
|
| 21 |
+
models = model_loader.preload_models_from_standard_weights(model_file, DEVICE)
|
| 22 |
+
|
| 23 |
+
## TEXT TO IMAGE
|
| 24 |
+
|
| 25 |
+
# prompt = "A dog with sunglasses, wearing comfy hat, looking at camera, highly detailed, ultra sharp, cinematic, 100mm lens, 8k resolution."
|
| 26 |
+
prompt = "A boy playing football with his teammates."
|
| 27 |
+
uncond_prompt = "" # Also known as negative prompt
|
| 28 |
+
do_cfg = True
|
| 29 |
+
cfg_scale = 8 # min: 1, max: 14
|
| 30 |
+
|
| 31 |
+
## IMAGE TO IMAGE
|
| 32 |
+
|
| 33 |
+
input_image = None
|
| 34 |
+
# Comment to disable image to image
|
| 35 |
+
image_path = "../images/dog.jpg"
|
| 36 |
+
# input_image = Image.open(image_path)
|
| 37 |
+
# Higher values means more noise will be added to the input image, so the result will further from the input image.
|
| 38 |
+
# Lower values means less noise is added to the input image, so output will be closer to the input image.
|
| 39 |
+
strength = 0.9
|
| 40 |
+
|
| 41 |
+
## SAMPLER
|
| 42 |
+
|
| 43 |
+
sampler = "ddpm"
|
| 44 |
+
num_inference_steps = 50
|
| 45 |
+
seed = 42
|
| 46 |
+
|
| 47 |
+
output_image = pipeline.generate(
|
| 48 |
+
prompt=prompt,
|
| 49 |
+
uncond_prompt=uncond_prompt,
|
| 50 |
+
input_image=input_image,
|
| 51 |
+
strength=strength,
|
| 52 |
+
do_cfg=do_cfg,
|
| 53 |
+
cfg_scale=cfg_scale,
|
| 54 |
+
sampler_name=sampler,
|
| 55 |
+
n_inference_steps=num_inference_steps,
|
| 56 |
+
seed=seed,
|
| 57 |
+
models=models,
|
| 58 |
+
device=DEVICE,
|
| 59 |
+
idle_device="cpu",
|
| 60 |
+
tokenizer=tokenizer,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Combine the input image and the output image into a single image.
|
| 64 |
+
Image.fromarray(output_image)
|
| 65 |
+
result_img = Image.fromarray(output_image)
|
| 66 |
+
result_img.save("output.png")
|
| 67 |
+
print("Saved output.png")
|
diffusion.py
ADDED
|
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
from attention import SelfAttention, CrossAttention
|
| 5 |
+
|
| 6 |
+
class TimeEmbedding(nn.Module):
|
| 7 |
+
def __init__(self, n_embd):
|
| 8 |
+
super().__init__()
|
| 9 |
+
self.linear_1 = nn.Linear(n_embd, 4 * n_embd)
|
| 10 |
+
self.linear_2 = nn.Linear(4 * n_embd, 4 * n_embd)
|
| 11 |
+
|
| 12 |
+
def forward(self, x):
|
| 13 |
+
# x: (1, 320)
|
| 14 |
+
|
| 15 |
+
# (1, 320) -> (1, 1280)
|
| 16 |
+
x = self.linear_1(x)
|
| 17 |
+
|
| 18 |
+
# (1, 1280) -> (1, 1280)
|
| 19 |
+
x = F.silu(x)
|
| 20 |
+
|
| 21 |
+
# (1, 1280) -> (1, 1280)
|
| 22 |
+
x = self.linear_2(x)
|
| 23 |
+
|
| 24 |
+
return x
|
| 25 |
+
|
| 26 |
+
class UNET_ResidualBlock(nn.Module):
|
| 27 |
+
def __init__(self, in_channels, out_channels, n_time=1280):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.groupnorm_feature = nn.GroupNorm(32, in_channels)
|
| 30 |
+
self.conv_feature = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
| 31 |
+
self.linear_time = nn.Linear(n_time, out_channels)
|
| 32 |
+
|
| 33 |
+
self.groupnorm_merged = nn.GroupNorm(32, out_channels)
|
| 34 |
+
self.conv_merged = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
|
| 35 |
+
|
| 36 |
+
if in_channels == out_channels:
|
| 37 |
+
self.residual_layer = nn.Identity()
|
| 38 |
+
else:
|
| 39 |
+
self.residual_layer = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
|
| 40 |
+
|
| 41 |
+
def forward(self, feature, time):
|
| 42 |
+
# feature: (Batch_Size, In_Channels, Height, Width)
|
| 43 |
+
# time: (1, 1280)
|
| 44 |
+
|
| 45 |
+
residue = feature
|
| 46 |
+
|
| 47 |
+
# (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, In_Channels, Height, Width)
|
| 48 |
+
feature = self.groupnorm_feature(feature)
|
| 49 |
+
|
| 50 |
+
# (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, In_Channels, Height, Width)
|
| 51 |
+
feature = F.silu(feature)
|
| 52 |
+
|
| 53 |
+
# (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
|
| 54 |
+
feature = self.conv_feature(feature)
|
| 55 |
+
|
| 56 |
+
# (1, 1280) -> (1, 1280)
|
| 57 |
+
time = F.silu(time)
|
| 58 |
+
|
| 59 |
+
# (1, 1280) -> (1, Out_Channels)
|
| 60 |
+
time = self.linear_time(time)
|
| 61 |
+
|
| 62 |
+
# Add width and height dimension to time.
|
| 63 |
+
# (Batch_Size, Out_Channels, Height, Width) + (1, Out_Channels, 1, 1) -> (Batch_Size, Out_Channels, Height, Width)
|
| 64 |
+
merged = feature + time.unsqueeze(-1).unsqueeze(-1)
|
| 65 |
+
|
| 66 |
+
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
|
| 67 |
+
merged = self.groupnorm_merged(merged)
|
| 68 |
+
|
| 69 |
+
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
|
| 70 |
+
merged = F.silu(merged)
|
| 71 |
+
|
| 72 |
+
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
|
| 73 |
+
merged = self.conv_merged(merged)
|
| 74 |
+
|
| 75 |
+
# (Batch_Size, Out_Channels, Height, Width) + (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
|
| 76 |
+
return merged + self.residual_layer(residue)
|
| 77 |
+
|
| 78 |
+
class UNET_AttentionBlock(nn.Module):
|
| 79 |
+
def __init__(self, n_head: int, n_embd: int, d_context=768):
|
| 80 |
+
super().__init__()
|
| 81 |
+
channels = n_head * n_embd
|
| 82 |
+
|
| 83 |
+
self.groupnorm = nn.GroupNorm(32, channels, eps=1e-6)
|
| 84 |
+
self.conv_input = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
|
| 85 |
+
|
| 86 |
+
self.layernorm_1 = nn.LayerNorm(channels)
|
| 87 |
+
self.attention_1 = SelfAttention(n_head, channels, in_proj_bias=False)
|
| 88 |
+
self.layernorm_2 = nn.LayerNorm(channels)
|
| 89 |
+
self.attention_2 = CrossAttention(n_head, channels, d_context, in_proj_bias=False)
|
| 90 |
+
self.layernorm_3 = nn.LayerNorm(channels)
|
| 91 |
+
self.linear_geglu_1 = nn.Linear(channels, 4 * channels * 2)
|
| 92 |
+
self.linear_geglu_2 = nn.Linear(4 * channels, channels)
|
| 93 |
+
|
| 94 |
+
self.conv_output = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
|
| 95 |
+
|
| 96 |
+
def forward(self, x, context):
|
| 97 |
+
# x: (Batch_Size, Features, Height, Width)
|
| 98 |
+
# context: (Batch_Size, Seq_Len, Dim)
|
| 99 |
+
|
| 100 |
+
residue_long = x
|
| 101 |
+
|
| 102 |
+
# (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width)
|
| 103 |
+
x = self.groupnorm(x)
|
| 104 |
+
|
| 105 |
+
# (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width)
|
| 106 |
+
x = self.conv_input(x)
|
| 107 |
+
|
| 108 |
+
n, c, h, w = x.shape
|
| 109 |
+
|
| 110 |
+
# (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height * Width)
|
| 111 |
+
x = x.view((n, c, h * w))
|
| 112 |
+
|
| 113 |
+
# (Batch_Size, Features, Height * Width) -> (Batch_Size, Height * Width, Features)
|
| 114 |
+
x = x.transpose(-1, -2)
|
| 115 |
+
|
| 116 |
+
# Normalization + Self-Attention with skip connection
|
| 117 |
+
|
| 118 |
+
# (Batch_Size, Height * Width, Features)
|
| 119 |
+
residue_short = x
|
| 120 |
+
|
| 121 |
+
# (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features)
|
| 122 |
+
x = self.layernorm_1(x)
|
| 123 |
+
|
| 124 |
+
# (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features)
|
| 125 |
+
x = self.attention_1(x)
|
| 126 |
+
|
| 127 |
+
# (Batch_Size, Height * Width, Features) + (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features)
|
| 128 |
+
x += residue_short
|
| 129 |
+
|
| 130 |
+
# (Batch_Size, Height * Width, Features)
|
| 131 |
+
residue_short = x
|
| 132 |
+
|
| 133 |
+
# Normalization + Cross-Attention with skip connection
|
| 134 |
+
|
| 135 |
+
# (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features)
|
| 136 |
+
x = self.layernorm_2(x)
|
| 137 |
+
|
| 138 |
+
# (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features)
|
| 139 |
+
x = self.attention_2(x, context)
|
| 140 |
+
|
| 141 |
+
# (Batch_Size, Height * Width, Features) + (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features)
|
| 142 |
+
x += residue_short
|
| 143 |
+
|
| 144 |
+
# (Batch_Size, Height * Width, Features)
|
| 145 |
+
residue_short = x
|
| 146 |
+
|
| 147 |
+
# Normalization + FFN with GeGLU and skip connection
|
| 148 |
+
|
| 149 |
+
# (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features)
|
| 150 |
+
x = self.layernorm_3(x)
|
| 151 |
+
|
| 152 |
+
# GeGLU as implemented in the original code: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/attention.py#L37C10-L37C10
|
| 153 |
+
# (Batch_Size, Height * Width, Features) -> two tensors of shape (Batch_Size, Height * Width, Features * 4)
|
| 154 |
+
x, gate = self.linear_geglu_1(x).chunk(2, dim=-1)
|
| 155 |
+
|
| 156 |
+
# Element-wise product: (Batch_Size, Height * Width, Features * 4) * (Batch_Size, Height * Width, Features * 4) -> (Batch_Size, Height * Width, Features * 4)
|
| 157 |
+
x = x * F.gelu(gate)
|
| 158 |
+
|
| 159 |
+
# (Batch_Size, Height * Width, Features * 4) -> (Batch_Size, Height * Width, Features)
|
| 160 |
+
x = self.linear_geglu_2(x)
|
| 161 |
+
|
| 162 |
+
# (Batch_Size, Height * Width, Features) + (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features)
|
| 163 |
+
x += residue_short
|
| 164 |
+
|
| 165 |
+
# (Batch_Size, Height * Width, Features) -> (Batch_Size, Features, Height * Width)
|
| 166 |
+
x = x.transpose(-1, -2)
|
| 167 |
+
|
| 168 |
+
# (Batch_Size, Features, Height * Width) -> (Batch_Size, Features, Height, Width)
|
| 169 |
+
x = x.view((n, c, h, w))
|
| 170 |
+
|
| 171 |
+
# Final skip connection between initial input and output of the block
|
| 172 |
+
# (Batch_Size, Features, Height, Width) + (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width)
|
| 173 |
+
return self.conv_output(x) + residue_long
|
| 174 |
+
|
| 175 |
+
class Upsample(nn.Module):
|
| 176 |
+
def __init__(self, channels):
|
| 177 |
+
super().__init__()
|
| 178 |
+
self.conv = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
|
| 179 |
+
|
| 180 |
+
def forward(self, x):
|
| 181 |
+
# (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height * 2, Width * 2)
|
| 182 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
| 183 |
+
return self.conv(x)
|
| 184 |
+
|
| 185 |
+
class SwitchSequential(nn.Sequential):
|
| 186 |
+
def forward(self, x, context, time):
|
| 187 |
+
for layer in self:
|
| 188 |
+
if isinstance(layer, UNET_AttentionBlock):
|
| 189 |
+
x = layer(x, context)
|
| 190 |
+
elif isinstance(layer, UNET_ResidualBlock):
|
| 191 |
+
x = layer(x, time)
|
| 192 |
+
else:
|
| 193 |
+
x = layer(x)
|
| 194 |
+
return x
|
| 195 |
+
|
| 196 |
+
class UNET(nn.Module):
|
| 197 |
+
def __init__(self):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.encoders = nn.ModuleList([
|
| 200 |
+
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 201 |
+
SwitchSequential(nn.Conv2d(4, 320, kernel_size=3, padding=1)),
|
| 202 |
+
|
| 203 |
+
# (Batch_Size, 320, Height / 8, Width / 8) -> # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 204 |
+
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
|
| 205 |
+
|
| 206 |
+
# (Batch_Size, 320, Height / 8, Width / 8) -> # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 207 |
+
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
|
| 208 |
+
|
| 209 |
+
# (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 16, Width / 16)
|
| 210 |
+
SwitchSequential(nn.Conv2d(320, 320, kernel_size=3, stride=2, padding=1)),
|
| 211 |
+
|
| 212 |
+
# (Batch_Size, 320, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16)
|
| 213 |
+
SwitchSequential(UNET_ResidualBlock(320, 640), UNET_AttentionBlock(8, 80)),
|
| 214 |
+
|
| 215 |
+
# (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16)
|
| 216 |
+
SwitchSequential(UNET_ResidualBlock(640, 640), UNET_AttentionBlock(8, 80)),
|
| 217 |
+
|
| 218 |
+
# (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 32, Width / 32)
|
| 219 |
+
SwitchSequential(nn.Conv2d(640, 640, kernel_size=3, stride=2, padding=1)),
|
| 220 |
+
|
| 221 |
+
# (Batch_Size, 640, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32)
|
| 222 |
+
SwitchSequential(UNET_ResidualBlock(640, 1280), UNET_AttentionBlock(8, 160)),
|
| 223 |
+
|
| 224 |
+
# (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32)
|
| 225 |
+
SwitchSequential(UNET_ResidualBlock(1280, 1280), UNET_AttentionBlock(8, 160)),
|
| 226 |
+
|
| 227 |
+
# (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 64, Width / 64)
|
| 228 |
+
SwitchSequential(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1)),
|
| 229 |
+
|
| 230 |
+
# (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64)
|
| 231 |
+
SwitchSequential(UNET_ResidualBlock(1280, 1280)),
|
| 232 |
+
|
| 233 |
+
# (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64)
|
| 234 |
+
SwitchSequential(UNET_ResidualBlock(1280, 1280)),
|
| 235 |
+
])
|
| 236 |
+
|
| 237 |
+
self.bottleneck = SwitchSequential(
|
| 238 |
+
# (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64)
|
| 239 |
+
UNET_ResidualBlock(1280, 1280),
|
| 240 |
+
|
| 241 |
+
# (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64)
|
| 242 |
+
UNET_AttentionBlock(8, 160),
|
| 243 |
+
|
| 244 |
+
# (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64)
|
| 245 |
+
UNET_ResidualBlock(1280, 1280),
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
self.decoders = nn.ModuleList([
|
| 249 |
+
# (Batch_Size, 2560, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64)
|
| 250 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280)),
|
| 251 |
+
|
| 252 |
+
# (Batch_Size, 2560, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64)
|
| 253 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280)),
|
| 254 |
+
|
| 255 |
+
# (Batch_Size, 2560, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 32, Width / 32)
|
| 256 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280), Upsample(1280)),
|
| 257 |
+
|
| 258 |
+
# (Batch_Size, 2560, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32)
|
| 259 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
|
| 260 |
+
|
| 261 |
+
# (Batch_Size, 2560, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32)
|
| 262 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
|
| 263 |
+
|
| 264 |
+
# (Batch_Size, 1920, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 16, Width / 16)
|
| 265 |
+
SwitchSequential(UNET_ResidualBlock(1920, 1280), UNET_AttentionBlock(8, 160), Upsample(1280)),
|
| 266 |
+
|
| 267 |
+
# (Batch_Size, 1920, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16)
|
| 268 |
+
SwitchSequential(UNET_ResidualBlock(1920, 640), UNET_AttentionBlock(8, 80)),
|
| 269 |
+
|
| 270 |
+
# (Batch_Size, 1280, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16)
|
| 271 |
+
SwitchSequential(UNET_ResidualBlock(1280, 640), UNET_AttentionBlock(8, 80)),
|
| 272 |
+
|
| 273 |
+
# (Batch_Size, 960, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 8, Width / 8)
|
| 274 |
+
SwitchSequential(UNET_ResidualBlock(960, 640), UNET_AttentionBlock(8, 80), Upsample(640)),
|
| 275 |
+
|
| 276 |
+
# (Batch_Size, 960, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 277 |
+
SwitchSequential(UNET_ResidualBlock(960, 320), UNET_AttentionBlock(8, 40)),
|
| 278 |
+
|
| 279 |
+
# (Batch_Size, 640, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 280 |
+
SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
|
| 281 |
+
|
| 282 |
+
# (Batch_Size, 640, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 283 |
+
SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
|
| 284 |
+
])
|
| 285 |
+
|
| 286 |
+
def forward(self, x, context, time):
|
| 287 |
+
# x: (Batch_Size, 4, Height / 8, Width / 8)
|
| 288 |
+
# context: (Batch_Size, Seq_Len, Dim)
|
| 289 |
+
# time: (1, 1280)
|
| 290 |
+
|
| 291 |
+
skip_connections = []
|
| 292 |
+
for layers in self.encoders:
|
| 293 |
+
x = layers(x, context, time)
|
| 294 |
+
skip_connections.append(x)
|
| 295 |
+
|
| 296 |
+
x = self.bottleneck(x, context, time)
|
| 297 |
+
|
| 298 |
+
for layers in self.decoders:
|
| 299 |
+
# Since we always concat with the skip connection of the encoder, the number of features increases before being sent to the decoder's layer
|
| 300 |
+
x = torch.cat((x, skip_connections.pop()), dim=1)
|
| 301 |
+
x = layers(x, context, time)
|
| 302 |
+
|
| 303 |
+
return x
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class UNET_OutputLayer(nn.Module):
|
| 307 |
+
def __init__(self, in_channels, out_channels):
|
| 308 |
+
super().__init__()
|
| 309 |
+
self.groupnorm = nn.GroupNorm(32, in_channels)
|
| 310 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
| 311 |
+
|
| 312 |
+
def forward(self, x):
|
| 313 |
+
# x: (Batch_Size, 320, Height / 8, Width / 8)
|
| 314 |
+
|
| 315 |
+
# (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 316 |
+
x = self.groupnorm(x)
|
| 317 |
+
|
| 318 |
+
# (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 319 |
+
x = F.silu(x)
|
| 320 |
+
|
| 321 |
+
# (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
|
| 322 |
+
x = self.conv(x)
|
| 323 |
+
|
| 324 |
+
# (Batch_Size, 4, Height / 8, Width / 8)
|
| 325 |
+
return x
|
| 326 |
+
|
| 327 |
+
class Diffusion(nn.Module):
|
| 328 |
+
def __init__(self):
|
| 329 |
+
super().__init__()
|
| 330 |
+
self.time_embedding = TimeEmbedding(320)
|
| 331 |
+
self.unet = UNET()
|
| 332 |
+
self.final = UNET_OutputLayer(320, 4)
|
| 333 |
+
|
| 334 |
+
def forward(self, latent, context, time):
|
| 335 |
+
# latent: (Batch_Size, 4, Height / 8, Width / 8)
|
| 336 |
+
# context: (Batch_Size, Seq_Len, Dim)
|
| 337 |
+
# time: (1, 320)
|
| 338 |
+
|
| 339 |
+
# (1, 320) -> (1, 1280)
|
| 340 |
+
time = self.time_embedding(time)
|
| 341 |
+
|
| 342 |
+
# (Batch, 4, Height / 8, Width / 8) -> (Batch, 320, Height / 8, Width / 8)
|
| 343 |
+
output = self.unet(latent, context, time)
|
| 344 |
+
|
| 345 |
+
# (Batch, 320, Height / 8, Width / 8) -> (Batch, 4, Height / 8, Width / 8)
|
| 346 |
+
output = self.final(output)
|
| 347 |
+
|
| 348 |
+
# (Batch, 4, Height / 8, Width / 8)
|
| 349 |
+
return output
|
encoder.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
from decoder import VAE_AttentionBlock, VAE_ResidualBlock
|
| 5 |
+
|
| 6 |
+
class VAE_Encoder(nn.Sequential):
|
| 7 |
+
def __init__(self):
|
| 8 |
+
super().__init__(
|
| 9 |
+
# (Batch_Size, Channel, Height, Width) -> (Batch_Size, 128, Height, Width)
|
| 10 |
+
nn.Conv2d(3, 128, kernel_size=3, padding=1),
|
| 11 |
+
|
| 12 |
+
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
|
| 13 |
+
VAE_ResidualBlock(128, 128),
|
| 14 |
+
|
| 15 |
+
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
|
| 16 |
+
VAE_ResidualBlock(128, 128),
|
| 17 |
+
|
| 18 |
+
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height / 2, Width / 2)
|
| 19 |
+
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=0),
|
| 20 |
+
|
| 21 |
+
# (Batch_Size, 128, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
|
| 22 |
+
VAE_ResidualBlock(128, 256),
|
| 23 |
+
|
| 24 |
+
# (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
|
| 25 |
+
VAE_ResidualBlock(256, 256),
|
| 26 |
+
|
| 27 |
+
# (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 4, Width / 4)
|
| 28 |
+
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=0),
|
| 29 |
+
|
| 30 |
+
# (Batch_Size, 256, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
|
| 31 |
+
VAE_ResidualBlock(256, 512),
|
| 32 |
+
|
| 33 |
+
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
|
| 34 |
+
VAE_ResidualBlock(512, 512),
|
| 35 |
+
|
| 36 |
+
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 37 |
+
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=0),
|
| 38 |
+
|
| 39 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 40 |
+
VAE_ResidualBlock(512, 512),
|
| 41 |
+
|
| 42 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 43 |
+
VAE_ResidualBlock(512, 512),
|
| 44 |
+
|
| 45 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 46 |
+
VAE_ResidualBlock(512, 512),
|
| 47 |
+
|
| 48 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 49 |
+
VAE_AttentionBlock(512),
|
| 50 |
+
|
| 51 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 52 |
+
VAE_ResidualBlock(512, 512),
|
| 53 |
+
|
| 54 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 55 |
+
nn.GroupNorm(32, 512),
|
| 56 |
+
|
| 57 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
|
| 58 |
+
nn.SiLU(),
|
| 59 |
+
|
| 60 |
+
# Because the padding=1, it means the width and height will increase by 2
|
| 61 |
+
# Out_Height = In_Height + Padding_Top + Padding_Bottom
|
| 62 |
+
# Out_Width = In_Width + Padding_Left + Padding_Right
|
| 63 |
+
# Since padding = 1 means Padding_Top = Padding_Bottom = Padding_Left = Padding_Right = 1,
|
| 64 |
+
# Since the Out_Width = In_Width + 2 (same for Out_Height), it will compensate for the Kernel size of 3
|
| 65 |
+
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 8, Height / 8, Width / 8).
|
| 66 |
+
nn.Conv2d(512, 8, kernel_size=3, padding=1),
|
| 67 |
+
|
| 68 |
+
# (Batch_Size, 8, Height / 8, Width / 8) -> (Batch_Size, 8, Height / 8, Width / 8)
|
| 69 |
+
nn.Conv2d(8, 8, kernel_size=1, padding=0),
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
def forward(self, x, noise):
|
| 73 |
+
# x: (Batch_Size, Channel, Height, Width)
|
| 74 |
+
# noise: (Batch_Size, 4, Height / 8, Width / 8)
|
| 75 |
+
|
| 76 |
+
for module in self:
|
| 77 |
+
|
| 78 |
+
if getattr(module, 'stride', None) == (2, 2): # Padding at downsampling should be asymmetric (see #8)
|
| 79 |
+
# Pad: (Padding_Left, Padding_Right, Padding_Top, Padding_Bottom).
|
| 80 |
+
# Pad with zeros on the right and bottom.
|
| 81 |
+
# (Batch_Size, Channel, Height, Width) -> (Batch_Size, Channel, Height + Padding_Top + Padding_Bottom, Width + Padding_Left + Padding_Right) = (Batch_Size, Channel, Height + 1, Width + 1)
|
| 82 |
+
x = F.pad(x, (0, 1, 0, 1))
|
| 83 |
+
|
| 84 |
+
x = module(x)
|
| 85 |
+
# (Batch_Size, 8, Height / 8, Width / 8) -> two tensors of shape (Batch_Size, 4, Height / 8, Width / 8)
|
| 86 |
+
mean, log_variance = torch.chunk(x, 2, dim=1)
|
| 87 |
+
# Clamp the log variance between -30 and 20, so that the variance is between (circa) 1e-14 and 1e8.
|
| 88 |
+
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
|
| 89 |
+
log_variance = torch.clamp(log_variance, -30, 20)
|
| 90 |
+
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
|
| 91 |
+
variance = log_variance.exp()
|
| 92 |
+
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
|
| 93 |
+
stdev = variance.sqrt()
|
| 94 |
+
|
| 95 |
+
# Transform N(0, 1) -> N(mean, stdev)
|
| 96 |
+
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
|
| 97 |
+
x = mean + stdev * noise
|
| 98 |
+
|
| 99 |
+
# Scale by a constant
|
| 100 |
+
# Constant taken from: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/configs/stable-diffusion/v1-inference.yaml#L17C1-L17C1
|
| 101 |
+
x *= 0.18215
|
| 102 |
+
|
| 103 |
+
return x
|
model_converter.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model_loader.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from clip import CLIP
|
| 2 |
+
from encoder import VAE_Encoder
|
| 3 |
+
from decoder import VAE_Decoder
|
| 4 |
+
from diffusion import Diffusion
|
| 5 |
+
|
| 6 |
+
import model_converter
|
| 7 |
+
|
| 8 |
+
def preload_models_from_standard_weights(ckpt_path, device):
|
| 9 |
+
state_dict = model_converter.load_from_standard_weights(ckpt_path, device)
|
| 10 |
+
|
| 11 |
+
encoder = VAE_Encoder().to(device)
|
| 12 |
+
encoder.load_state_dict(state_dict['encoder'], strict=True)
|
| 13 |
+
|
| 14 |
+
decoder = VAE_Decoder().to(device)
|
| 15 |
+
decoder.load_state_dict(state_dict['decoder'], strict=True)
|
| 16 |
+
|
| 17 |
+
diffusion = Diffusion().to(device)
|
| 18 |
+
diffusion.load_state_dict(state_dict['diffusion'], strict=True)
|
| 19 |
+
|
| 20 |
+
clip = CLIP().to(device)
|
| 21 |
+
clip.load_state_dict(state_dict['clip'], strict=True)
|
| 22 |
+
|
| 23 |
+
return {
|
| 24 |
+
'clip': clip,
|
| 25 |
+
'encoder': encoder,
|
| 26 |
+
'decoder': decoder,
|
| 27 |
+
'diffusion': diffusion,
|
| 28 |
+
}
|
output.png
ADDED
|
Git LFS Details
|
pipeline.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
from ddpm import DDPMSampler
|
| 5 |
+
|
| 6 |
+
WIDTH = 512
|
| 7 |
+
HEIGHT = 512
|
| 8 |
+
LATENTS_WIDTH = WIDTH // 8
|
| 9 |
+
LATENTS_HEIGHT = HEIGHT // 8
|
| 10 |
+
|
| 11 |
+
def generate(
|
| 12 |
+
prompt,
|
| 13 |
+
uncond_prompt=None,
|
| 14 |
+
input_image=None,
|
| 15 |
+
strength=0.8,
|
| 16 |
+
do_cfg=True,
|
| 17 |
+
cfg_scale=7.5,
|
| 18 |
+
sampler_name="ddpm",
|
| 19 |
+
n_inference_steps=50,
|
| 20 |
+
models={},
|
| 21 |
+
seed=None,
|
| 22 |
+
device=None,
|
| 23 |
+
idle_device=None,
|
| 24 |
+
tokenizer=None,
|
| 25 |
+
):
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
if not 0 < strength <= 1:
|
| 28 |
+
raise ValueError("strength must be between 0 and 1")
|
| 29 |
+
|
| 30 |
+
if idle_device:
|
| 31 |
+
to_idle = lambda x: x.to(idle_device)
|
| 32 |
+
else:
|
| 33 |
+
to_idle = lambda x: x
|
| 34 |
+
|
| 35 |
+
# Initialize random number generator according to the seed specified
|
| 36 |
+
generator = torch.Generator(device=device)
|
| 37 |
+
if seed is None:
|
| 38 |
+
generator.seed()
|
| 39 |
+
else:
|
| 40 |
+
generator.manual_seed(seed)
|
| 41 |
+
|
| 42 |
+
clip = models["clip"]
|
| 43 |
+
clip.to(device)
|
| 44 |
+
|
| 45 |
+
if do_cfg:
|
| 46 |
+
# Convert into a list of length Seq_Len=77
|
| 47 |
+
cond_tokens = tokenizer.batch_encode_plus(
|
| 48 |
+
[prompt], padding="max_length", max_length=77
|
| 49 |
+
).input_ids
|
| 50 |
+
# (Batch_Size, Seq_Len)
|
| 51 |
+
cond_tokens = torch.tensor(cond_tokens, dtype=torch.long, device=device)
|
| 52 |
+
# (Batch_Size, Seq_Len) -> (Batch_Size, Seq_Len, Dim)
|
| 53 |
+
cond_context = clip(cond_tokens)
|
| 54 |
+
# Convert into a list of length Seq_Len=77
|
| 55 |
+
uncond_tokens = tokenizer.batch_encode_plus(
|
| 56 |
+
[uncond_prompt], padding="max_length", max_length=77
|
| 57 |
+
).input_ids
|
| 58 |
+
# (Batch_Size, Seq_Len)
|
| 59 |
+
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=device)
|
| 60 |
+
# (Batch_Size, Seq_Len) -> (Batch_Size, Seq_Len, Dim)
|
| 61 |
+
uncond_context = clip(uncond_tokens)
|
| 62 |
+
# (Batch_Size, Seq_Len, Dim) + (Batch_Size, Seq_Len, Dim) -> (2 * Batch_Size, Seq_Len, Dim)
|
| 63 |
+
context = torch.cat([cond_context, uncond_context])
|
| 64 |
+
else:
|
| 65 |
+
# Convert into a list of length Seq_Len=77
|
| 66 |
+
tokens = tokenizer.batch_encode_plus(
|
| 67 |
+
[prompt], padding="max_length", max_length=77
|
| 68 |
+
).input_ids
|
| 69 |
+
# (Batch_Size, Seq_Len)
|
| 70 |
+
tokens = torch.tensor(tokens, dtype=torch.long, device=device)
|
| 71 |
+
# (Batch_Size, Seq_Len) -> (Batch_Size, Seq_Len, Dim)
|
| 72 |
+
context = clip(tokens)
|
| 73 |
+
to_idle(clip)
|
| 74 |
+
|
| 75 |
+
if sampler_name == "ddpm":
|
| 76 |
+
sampler = DDPMSampler(generator)
|
| 77 |
+
sampler.set_inference_timesteps(n_inference_steps)
|
| 78 |
+
else:
|
| 79 |
+
raise ValueError("Unknown sampler value %s. ")
|
| 80 |
+
|
| 81 |
+
latents_shape = (1, 4, LATENTS_HEIGHT, LATENTS_WIDTH)
|
| 82 |
+
|
| 83 |
+
if input_image:
|
| 84 |
+
encoder = models["encoder"]
|
| 85 |
+
encoder.to(device)
|
| 86 |
+
|
| 87 |
+
input_image_tensor = input_image.resize((WIDTH, HEIGHT))
|
| 88 |
+
# (Height, Width, Channel)
|
| 89 |
+
input_image_tensor = np.array(input_image_tensor)
|
| 90 |
+
# (Height, Width, Channel) -> (Height, Width, Channel)
|
| 91 |
+
input_image_tensor = torch.tensor(input_image_tensor, dtype=torch.float32, device=device)
|
| 92 |
+
# (Height, Width, Channel) -> (Height, Width, Channel)
|
| 93 |
+
input_image_tensor = rescale(input_image_tensor, (0, 255), (-1, 1))
|
| 94 |
+
# (Height, Width, Channel) -> (Batch_Size, Height, Width, Channel)
|
| 95 |
+
input_image_tensor = input_image_tensor.unsqueeze(0)
|
| 96 |
+
# (Batch_Size, Height, Width, Channel) -> (Batch_Size, Channel, Height, Width)
|
| 97 |
+
input_image_tensor = input_image_tensor.permute(0, 3, 1, 2)
|
| 98 |
+
|
| 99 |
+
# (Batch_Size, 4, Latents_Height, Latents_Width)
|
| 100 |
+
encoder_noise = torch.randn(latents_shape, generator=generator, device=device)
|
| 101 |
+
# (Batch_Size, 4, Latents_Height, Latents_Width)
|
| 102 |
+
latents = encoder(input_image_tensor, encoder_noise)
|
| 103 |
+
|
| 104 |
+
# Add noise to the latents (the encoded input image)
|
| 105 |
+
# (Batch_Size, 4, Latents_Height, Latents_Width)
|
| 106 |
+
sampler.set_strength(strength=strength)
|
| 107 |
+
latents = sampler.add_noise(latents, sampler.timesteps[0])
|
| 108 |
+
|
| 109 |
+
to_idle(encoder)
|
| 110 |
+
else:
|
| 111 |
+
# (Batch_Size, 4, Latents_Height, Latents_Width)
|
| 112 |
+
latents = torch.randn(latents_shape, generator=generator, device=device)
|
| 113 |
+
|
| 114 |
+
diffusion = models["diffusion"]
|
| 115 |
+
diffusion.to(device)
|
| 116 |
+
|
| 117 |
+
timesteps = tqdm(sampler.timesteps)
|
| 118 |
+
for i, timestep in enumerate(timesteps):
|
| 119 |
+
# (1, 320)
|
| 120 |
+
time_embedding = get_time_embedding(timestep).to(device)
|
| 121 |
+
|
| 122 |
+
# (Batch_Size, 4, Latents_Height, Latents_Width)
|
| 123 |
+
model_input = latents
|
| 124 |
+
|
| 125 |
+
if do_cfg:
|
| 126 |
+
# (Batch_Size, 4, Latents_Height, Latents_Width) -> (2 * Batch_Size, 4, Latents_Height, Latents_Width)
|
| 127 |
+
model_input = model_input.repeat(2, 1, 1, 1)
|
| 128 |
+
|
| 129 |
+
# model_output is the predicted noise
|
| 130 |
+
# (Batch_Size, 4, Latents_Height, Latents_Width) -> (Batch_Size, 4, Latents_Height, Latents_Width)
|
| 131 |
+
model_output = diffusion(model_input, context, time_embedding)
|
| 132 |
+
|
| 133 |
+
if do_cfg:
|
| 134 |
+
output_cond, output_uncond = model_output.chunk(2)
|
| 135 |
+
model_output = cfg_scale * (output_cond - output_uncond) + output_uncond
|
| 136 |
+
|
| 137 |
+
# (Batch_Size, 4, Latents_Height, Latents_Width) -> (Batch_Size, 4, Latents_Height, Latents_Width)
|
| 138 |
+
latents = sampler.step(timestep, latents, model_output)
|
| 139 |
+
|
| 140 |
+
to_idle(diffusion)
|
| 141 |
+
|
| 142 |
+
decoder = models["decoder"]
|
| 143 |
+
decoder.to(device)
|
| 144 |
+
# (Batch_Size, 4, Latents_Height, Latents_Width) -> (Batch_Size, 3, Height, Width)
|
| 145 |
+
images = decoder(latents)
|
| 146 |
+
to_idle(decoder)
|
| 147 |
+
|
| 148 |
+
images = rescale(images, (-1, 1), (0, 255), clamp=True)
|
| 149 |
+
# (Batch_Size, Channel, Height, Width) -> (Batch_Size, Height, Width, Channel)
|
| 150 |
+
images = images.permute(0, 2, 3, 1)
|
| 151 |
+
images = images.to("cpu", torch.uint8).numpy()
|
| 152 |
+
return images[0]
|
| 153 |
+
|
| 154 |
+
def rescale(x, old_range, new_range, clamp=False):
|
| 155 |
+
old_min, old_max = old_range
|
| 156 |
+
new_min, new_max = new_range
|
| 157 |
+
x -= old_min
|
| 158 |
+
x *= (new_max - new_min) / (old_max - old_min)
|
| 159 |
+
x += new_min
|
| 160 |
+
if clamp:
|
| 161 |
+
x = x.clamp(new_min, new_max)
|
| 162 |
+
return x
|
| 163 |
+
|
| 164 |
+
def get_time_embedding(timestep):
|
| 165 |
+
# Shape: (160,)
|
| 166 |
+
freqs = torch.pow(10000, -torch.arange(start=0, end=160, dtype=torch.float32) / 160)
|
| 167 |
+
# Shape: (1, 160)
|
| 168 |
+
x = torch.tensor([timestep], dtype=torch.float32)[:, None] * freqs[None]
|
| 169 |
+
# Shape: (1, 160 * 2)
|
| 170 |
+
return torch.cat([torch.cos(x), torch.sin(x)], dim=-1)
|