File size: 113,169 Bytes
f2e3711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 |
"""
Docs for backend users
~~~~~~~~~~~~~~~~~~~~~~
NetworkX utilizes a plugin-dispatch architecture. A valid NetworkX backend
specifies `entry points
<https://packaging.python.org/en/latest/specifications/entry-points>`_, named
``networkx.backends`` and an optional ``networkx.backend_info`` when it is
installed (not imported). This allows NetworkX to dispatch (redirect) function
calls to the backend so the execution flows to the designated backend
implementation. This design enhances flexibility and integration, making
NetworkX more adaptable and efficient.
NetworkX can dispatch to backends **explicitly** (this requires changing code)
or **automatically** (this requires setting configuration or environment
variables). The best way to use a backend depends on the backend, your use
case, and whether you want to automatically convert to or from backend
graphs. Automatic conversions of graphs is always opt-in.
To explicitly dispatch to a backend, use the `backend=` keyword argument in a
dispatchable function. This will convert (and cache by default) input NetworkX
graphs to backend graphs and call the backend implementation. Another explicit
way to use a backend is to create a backend graph directly--for example,
perhaps the backend has its own functions for loading data and creating
graphs--and pass that graph to a dispatchable function, which will then call
the backend implementation without converting.
Using automatic dispatch requires setting configuration options. Every NetworkX
configuration may also be set from an environment variable and are processed at
the time networkx is imported. The following configuration variables are
supported:
* ``nx.config.backend_priority`` (``NETWORKX_BACKEND_PRIORITY`` env var), a
list of backends, controls dispatchable functions that don't return graphs
such as e.g. ``nx.pagerank``. When one of these functions is called with
NetworkX graphs as input, the dispatcher iterates over the backends listed in
this backend_priority config and will use the first backend that implements
this function. The input NetworkX graphs are converted (and cached by
default) to backend graphs. Using this configuration can allow you to use the
full flexibility of NetworkX graphs and the performance of backend
implementations, but possible downsides are that creating NetworkX graphs,
converting to backend graphs, and caching backend graphs may all be
expensive.
* ``nx.config.backend_priority.algos`` (``NETWORKX_BACKEND_PRIORITY_ALGOS`` env
var), can be used instead of ``nx.config.backend_priority``
(``NETWORKX_BACKEND_PRIORITY`` env var) to emphasize that the setting only
affects the dispatching of algorithm functions as described above.
* ``nx.config.backend_priority.generators``
(``NETWORKX_BACKEND_PRIORITY_GENERATORS`` env var), a list of backends,
controls dispatchable functions that return graphs such as
nx.from_pandas_edgelist and nx.empty_graph. When one of these functions is
called, the first backend listed in this backend_priority config that
implements this function will be used and will return a backend graph. When
this backend graph is passed to other dispatchable NetworkX functions, it
will use the backend implementation if it exists or raise by default unless
nx.config.fallback_to_nx is True (default is False). Using this configuration
avoids creating NetworkX graphs, which subsequently avoids the need to
convert to and cache backend graphs as when using
nx.config.backend_priority.algos, but possible downsides are that the backend
graph may not behave the same as a NetworkX graph and the backend may not
implement all algorithms that you use, which may break your workflow.
* ``nx.config.fallback_to_nx`` (``NETWORKX_FALLBACK_TO_NX`` env var), a boolean
(default False), controls what happens when a backend graph is passed to a
dispatchable function that is not implemented by that backend. The default
behavior when False is to raise. If True, then the backend graph will be
converted (and cached by default) to a NetworkX graph and will run with the
default NetworkX implementation. Enabling this configuration can allow
workflows to complete if the backend does not implement all algorithms used
by the workflow, but a possible downside is that it may require converting
the input backend graph to a NetworkX graph, which may be expensive. If a
backend graph is duck-type compatible as a NetworkX graph, then the backend
may choose not to convert to a NetworkX graph and use the incoming graph
as-is.
* ``nx.config.cache_converted_graphs`` (``NETWORKX_CACHE_CONVERTED_GRAPHS`` env
var), a boolean (default True), controls whether graph conversions are cached
to G.__networkx_cache__ or not. Caching can improve performance by avoiding
repeated conversions, but it uses more memory.
.. note:: Backends *should* follow the NetworkX backend naming convention. For
example, if a backend is named ``parallel`` and specified using
``backend=parallel`` or ``NETWORKX_BACKEND_PRIORITY=parallel``, the package
installed is ``nx-parallel``, and we would use ``import nx_parallel`` if we
were to import the backend package directly.
Backends are encouraged to document how they recommend to be used and whether
their graph types are duck-type compatible as NetworkX graphs. If backend
graphs are NetworkX-compatible and you want your workflow to automatically
"just work" with a backend--converting and caching if necessary--then use all
of the above configurations. Automatically converting graphs is opt-in, and
configuration gives the user control.
Examples:
---------
Use the ``cugraph`` backend for every algorithm function it supports. This will
allow for fall back to the default NetworkX implementations for algorithm calls
not supported by cugraph because graph generator functions are still returning
NetworkX graphs.
.. code-block:: bash
bash> NETWORKX_BACKEND_PRIORITY=cugraph python my_networkx_script.py
Explicitly use the ``parallel`` backend for a function call.
.. code-block:: python
nx.betweenness_centrality(G, k=10, backend="parallel")
Explicitly use the ``parallel`` backend for a function call by passing an
instance of the backend graph type to the function.
.. code-block:: python
H = nx_parallel.ParallelGraph(G)
nx.betweenness_centrality(H, k=10)
Explicitly use the ``parallel`` backend and pass additional backend-specific
arguments. Here, ``get_chunks`` is an argument unique to the ``parallel``
backend.
.. code-block:: python
nx.betweenness_centrality(G, k=10, backend="parallel", get_chunks=get_chunks)
Automatically dispatch the ``cugraph`` backend for all NetworkX algorithms and
generators, and allow the backend graph object returned from generators to be
passed to NetworkX functions the backend does not support.
.. code-block:: bash
bash> NETWORKX_BACKEND_PRIORITY_ALGOS=cugraph \\
NETWORKX_BACKEND_PRIORITY_GENERATORS=cugraph \\
NETWORKX_FALLBACK_TO_NX=True \\
python my_networkx_script.py
How does this work?
-------------------
If you've looked at functions in the NetworkX codebase, you might have seen the
``@nx._dispatchable`` decorator on most of the functions. This decorator allows the NetworkX
function to dispatch to the corresponding backend function if available. When the decorated
function is called, it first checks for a backend to run the function, and if no appropriate
backend is specified or available, it runs the NetworkX version of the function.
Backend Keyword Argument
^^^^^^^^^^^^^^^^^^^^^^^^
When a decorated function is called with the ``backend`` kwarg provided, it checks
if the specified backend is installed, and loads it. Next it checks whether to convert
input graphs by first resolving the backend of each input graph by looking
for an attribute named ``__networkx_backend__`` that holds the backend name for that
graph type. If all input graphs backend matches the ``backend`` kwarg, the backend's
function is called with the original inputs. If any of the input graphs do not match
the ``backend`` kwarg, they are converted to the backend graph type before calling.
Exceptions are raised if any step is not possible, e.g. if the backend does not
implement this function.
Finding a Backend
^^^^^^^^^^^^^^^^^
When a decorated function is called without a ``backend`` kwarg, it tries to find a
dispatchable backend function.
The backend type of each input graph parameter is resolved (using the
``__networkx_backend__`` attribute) and if they all agree, that backend's function
is called if possible. Otherwise the backends listed in the config ``backend_priority``
are considered one at a time in order. If that backend supports the function and
can convert the input graphs to its backend type, that backend function is called.
Otherwise the next backend is considered.
During this process, the backends can provide helpful information to the dispatcher
via helper methods in the backend's interface. Backend methods ``can_run`` and
``should_run`` are used by the dispatcher to determine whether to use the backend
function. If the number of nodes is small, it might be faster to run the NetworkX
version of the function. This is how backends can provide info about whether to run.
Falling Back to NetworkX
^^^^^^^^^^^^^^^^^^^^^^^^
If none of the backends are appropriate, we "fall back" to the NetworkX function.
That means we resolve the backends of all input graphs and if all are NetworkX
graphs we call the NetworkX function. If any are not NetworkX graphs, we raise
an exception unless the `fallback_to_nx` config is set. If it is, we convert all
graph types to NetworkX graph types before calling the NetworkX function.
Functions that mutate the graph
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Any function decorated with the option that indicates it mutates the graph goes through
a slightly different path to automatically find backends. These functions typically
generate a graph, or add attributes or change the graph structure. The config
`backend_priority.generators` holds a list of backend names similar to the config
`backend_priority`. The process is similar for finding a matching backend. Once found,
the backend function is called and a backend graph is returned (instead of a NetworkX
graph). You can then use this backend graph in any function supported by the backend.
And you can use it for functions not supported by the backend if you set the config
`fallback_to_nx` to allow it to convert the backend graph to a NetworkX graph before
calling the function.
Optional keyword arguments
^^^^^^^^^^^^^^^^^^^^^^^^^^
Backends can add optional keyword parameters to NetworkX functions to allow you to
control aspects of the backend algorithm. Thus the function signatures can be extended
beyond the NetworkX function signature. For example, the ``parallel`` backend might
have a parameter to specify how many CPUs to use. These parameters are collected
by the dispatchable decorator code at the start of the function call and used when
calling the backend function.
Existing Backends
^^^^^^^^^^^^^^^^^
NetworkX does not know all the backends that have been created. In fact, the
NetworkX library does not need to know that a backend exists for it to work. As
long as the backend package creates the ``entry_point``, and provides the
correct interface, it will be called when the user requests it using one of the
three approaches described above. Some backends have been working with the
NetworkX developers to ensure smooth operation.
Refer to the :doc:`/backends` section to see a list of available backends known
to work with the current stable release of NetworkX.
.. _introspect:
Introspection and Logging
-------------------------
Introspection techniques aim to demystify dispatching and backend graph conversion behaviors.
The primary way to see what the dispatch machinery is doing is by enabling logging.
This can help you verify that the backend you specified is being used.
You can enable NetworkX's backend logger to print to ``sys.stderr`` like this::
import logging
nxl = logging.getLogger("networkx")
nxl.addHandler(logging.StreamHandler())
nxl.setLevel(logging.DEBUG)
And you can disable it by running this::
nxl.setLevel(logging.CRITICAL)
Refer to :external+python:mod:`logging` to learn more about the logging facilities in Python.
By looking at the ``.backends`` attribute, you can get the set of all currently
installed backends that implement a particular function. For example::
>>> nx.betweenness_centrality.backends # doctest: +SKIP
{'parallel'}
The function docstring will also show which installed backends support it
along with any backend-specific notes and keyword arguments::
>>> help(nx.betweenness_centrality) # doctest: +SKIP
...
Backends
--------
parallel : Parallel backend for NetworkX algorithms
The parallel computation is implemented by dividing the nodes into chunks
and computing betweenness centrality for each chunk concurrently.
...
The NetworkX documentation website also includes info about trusted backends of NetworkX in function references.
For example, see :func:`~networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path_length`.
Introspection capabilities are currently limited, but we are working to improve them.
We plan to make it easier to answer questions such as:
- What happened (and why)?
- What *will* happen (and why)?
- Where was time spent (including conversions)?
- What is in the cache and how much memory is it using?
Transparency is essential to allow for greater understanding, debug-ability,
and customization. After all, NetworkX dispatching is extremely flexible and can
support advanced workflows with multiple backends and fine-tuned configuration,
but introspection can be helpful by describing *when* and *how* to evolve your workflow
to meet your needs. If you have suggestions for how to improve introspection, please
`let us know <https://github.com/networkx/networkx/issues/new>`_!
Docs for backend developers
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Creating a custom backend
-------------------------
1. Defining a ``BackendInterface`` object:
Note that the ``BackendInterface`` doesn't need to must be a class. It can be an
instance of a class, or a module as well. You can define the following methods or
functions in your backend's ``BackendInterface`` object.:
1. ``convert_from_nx`` and ``convert_to_nx`` methods or functions are required for
backend dispatching to work. The arguments to ``convert_from_nx`` are:
- ``G`` : NetworkX Graph
- ``edge_attrs`` : dict, optional
Dictionary mapping edge attributes to default values if missing in ``G``.
If None, then no edge attributes will be converted and default may be 1.
- ``node_attrs``: dict, optional
Dictionary mapping node attributes to default values if missing in ``G``.
If None, then no node attributes will be converted.
- ``preserve_edge_attrs`` : bool
Whether to preserve all edge attributes.
- ``preserve_node_attrs`` : bool
Whether to preserve all node attributes.
- ``preserve_graph_attrs`` : bool
Whether to preserve all graph attributes.
- ``preserve_all_attrs`` : bool
Whether to preserve all graph, node, and edge attributes.
- ``name`` : str
The name of the algorithm.
- ``graph_name`` : str
The name of the graph argument being converted.
2. ``can_run`` (Optional):
If your backend only partially implements an algorithm, you can define
a ``can_run(name, args, kwargs)`` function in your ``BackendInterface`` object that
returns True or False indicating whether the backend can run the algorithm with
the given arguments or not. Instead of a boolean you can also return a string
message to inform the user why that algorithm can't be run.
3. ``should_run`` (Optional):
A backend may also define ``should_run(name, args, kwargs)``
that is similar to ``can_run``, but answers whether the backend *should* be run.
``should_run`` is only run when performing backend graph conversions. Like
``can_run``, it receives the original arguments so it can decide whether it
should be run by inspecting the arguments. ``can_run`` runs before
``should_run``, so ``should_run`` may assume ``can_run`` is True. If not
implemented by the backend, ``can_run``and ``should_run`` are assumed to
always return True if the backend implements the algorithm.
4. ``on_start_tests`` (Optional):
A special ``on_start_tests(items)`` function may be defined by the backend.
It will be called with the list of NetworkX tests discovered. Each item
is a test object that can be marked as xfail if the backend does not support
the test using ``item.add_marker(pytest.mark.xfail(reason=...))``.
2. Adding entry points
To be discoverable by NetworkX, your package must register an
`entry-point <https://packaging.python.org/en/latest/specifications/entry-points>`_
``networkx.backends`` in the package's metadata, with a `key pointing to your
dispatch object <https://packaging.python.org/en/latest/guides/creating-and-discovering-plugins/#using-package-metadata>`_ .
For example, if you are using ``setuptools`` to manage your backend package,
you can `add the following to your pyproject.toml file <https://setuptools.pypa.io/en/latest/userguide/entry_point.html>`_::
[project.entry-points."networkx.backends"]
backend_name = "your_backend_interface_object"
You can also add the ``backend_info`` entry-point. It points towards the ``get_info``
function that returns all the backend information, which is then used to build the
"Additional Backend Implementation" box at the end of algorithm's documentation
page. Note that the `get_info` function shouldn't import your backend package.::
[project.entry-points."networkx.backend_info"]
backend_name = "your_get_info_function"
The ``get_info`` should return a dictionary with following key-value pairs:
- ``backend_name`` : str or None
It is the name passed in the ``backend`` kwarg.
- ``project`` : str or None
The name of your backend project.
- ``package`` : str or None
The name of your backend package.
- ``url`` : str or None
This is the url to either your backend's codebase or documentation, and
will be displayed as a hyperlink to the ``backend_name``, in the
"Additional backend implementations" section.
- ``short_summary`` : str or None
One line summary of your backend which will be displayed in the
"Additional backend implementations" section.
- ``default_config`` : dict
A dictionary mapping the backend config parameter names to their default values.
This is used to automatically initialize the default configs for all the
installed backends at the time of networkx's import.
.. seealso:: `~networkx.utils.configs.Config`
- ``functions`` : dict or None
A dictionary mapping function names to a dictionary of information
about the function. The information can include the following keys:
- ``url`` : str or None
The url to ``function``'s source code or documentation.
- ``additional_docs`` : str or None
A short description or note about the backend function's
implementation.
- ``additional_parameters`` : dict or None
A dictionary mapping additional parameters headers to their
short descriptions. For example::
"additional_parameters": {
'param1 : str, function (default = "chunks")' : "...",
'param2 : int' : "...",
}
If any of these keys are not present, the corresponding information
will not be displayed in the "Additional backend implementations"
section on NetworkX docs website.
Note that your backend's docs would only appear on the official NetworkX docs only
if your backend is a trusted backend of NetworkX, and is present in the
`.circleci/config.yml` and `.github/workflows/deploy-docs.yml` files in the
NetworkX repository.
3. Defining a Backend Graph class
The backend must create an object with an attribute ``__networkx_backend__`` that holds
a string with the entry point name::
class BackendGraph:
__networkx_backend__ = "backend_name"
...
A backend graph instance may have a ``G.__networkx_cache__`` dict to enable
caching, and care should be taken to clear the cache when appropriate.
Testing the Custom backend
--------------------------
To test your custom backend, you can run the NetworkX test suite on your backend.
This also ensures that the custom backend is compatible with NetworkX's API.
The following steps will help you run the tests:
1. Setting Backend Environment Variables:
- ``NETWORKX_TEST_BACKEND`` : Setting this to your backend's ``backend_name`` will
let NetworkX's dispatch machinery to automatically convert a regular NetworkX
``Graph``, ``DiGraph``, ``MultiGraph``, etc. to their backend equivalents, using
``your_backend_interface_object.convert_from_nx(G, ...)`` function.
- ``NETWORKX_FALLBACK_TO_NX`` (default=False) : Setting this variable to `True` will
instruct tests to use a NetworkX ``Graph`` for algorithms not implemented by your
custom backend. Setting this to `False` will only run the tests for algorithms
implemented by your custom backend and tests for other algorithms will ``xfail``.
2. Running Tests:
You can invoke NetworkX tests for your custom backend with the following commands::
NETWORKX_TEST_BACKEND=<backend_name>
NETWORKX_FALLBACK_TO_NX=True # or False
pytest --pyargs networkx
How tests are run?
------------------
1. While dispatching to the backend implementation the ``_convert_and_call`` function
is used and while testing the ``_convert_and_call_for_tests`` function is used.
Other than testing it also checks for functions that return numpy scalars, and
for functions that return graphs it runs the backend implementation and the
networkx implementation and then converts the backend graph into a NetworkX graph
and then compares them, and returns the networkx graph. This can be regarded as
(pragmatic) technical debt. We may replace these checks in the future.
2. Conversions while running tests:
- Convert NetworkX graphs using ``<your_backend_interface_object>.convert_from_nx(G, ...)`` into
the backend graph.
- Pass the backend graph objects to the backend implementation of the algorithm.
- Convert the result back to a form expected by NetworkX tests using
``<your_backend_interface_object>.convert_to_nx(result, ...)``.
- For nx_loopback, the graph is copied using the dispatchable metadata
3. Dispatchable algorithms that are not implemented by the backend
will cause a ``pytest.xfail``, when the ``NETWORKX_FALLBACK_TO_NX``
environment variable is set to ``False``, giving some indication that
not all tests are running, while avoiding causing an explicit failure.
"""
import inspect
import itertools
import logging
import os
import warnings
from functools import partial
from importlib.metadata import entry_points
import networkx as nx
from .configs import BackendPriorities, Config, NetworkXConfig
from .decorators import argmap
__all__ = ["_dispatchable"]
_logger = logging.getLogger(__name__)
def _do_nothing():
"""This does nothing at all, yet it helps turn `_dispatchable` into functions."""
def _get_backends(group, *, load_and_call=False):
"""
Retrieve NetworkX ``backends`` and ``backend_info`` from the entry points.
Parameters
-----------
group : str
The entry_point to be retrieved.
load_and_call : bool, optional
If True, load and call the backend. Defaults to False.
Returns
--------
dict
A dictionary mapping backend names to their respective backend objects.
Notes
------
If a backend is defined more than once, a warning is issued.
The `nx_loopback` backend is removed if it exists, as it is only available during testing.
A warning is displayed if an error occurs while loading a backend.
"""
items = entry_points(group=group)
rv = {}
for ep in items:
if ep.name in rv:
warnings.warn(
f"networkx backend defined more than once: {ep.name}",
RuntimeWarning,
stacklevel=2,
)
elif load_and_call:
try:
rv[ep.name] = ep.load()()
except Exception as exc:
warnings.warn(
f"Error encountered when loading info for backend {ep.name}: {exc}",
RuntimeWarning,
stacklevel=2,
)
else:
rv[ep.name] = ep
rv.pop("nx_loopback", None)
return rv
# Note: "networkx" will be in `backend_info`, but not `backends` or `config.backends`.
# It is valid to use "networkx"` as backend argument and in `config.backend_priority`.
# We may make "networkx" a "proper" backend and have it in `backends` and `config.backends`.
backends = _get_backends("networkx.backends")
backend_info = {} # fill backend_info after networkx is imported in __init__.py
# Load and cache backends on-demand
_loaded_backends = {} # type: ignore[var-annotated]
_registered_algorithms = {}
# Get default configuration from environment variables at import time
def _comma_sep_to_list(string):
return [stripped for x in string.strip().split(",") if (stripped := x.strip())]
def _set_configs_from_environment():
"""Initialize ``config.backend_priority``, load backend_info and config.
This gets default values from environment variables (see ``nx.config`` for details).
This function is run at the very end of importing networkx. It is run at this time
to avoid loading backend_info before the rest of networkx is imported in case a
backend uses networkx for its backend_info (e.g. subclassing the Config class.)
"""
# backend_info is defined above as empty dict. Fill it after import finishes.
backend_info.update(_get_backends("networkx.backend_info", load_and_call=True))
backend_info.update(
(backend, {}) for backend in backends.keys() - backend_info.keys()
)
# set up config based on backend_info and environment
config = NetworkXConfig(
backend_priority=BackendPriorities(
algos=[],
generators=[],
),
backends=Config(
**{
backend: (
cfg
if isinstance(cfg := info["default_config"], Config)
else Config(**cfg)
)
if "default_config" in info
else Config()
for backend, info in backend_info.items()
}
),
cache_converted_graphs=bool(
os.environ.get("NETWORKX_CACHE_CONVERTED_GRAPHS", True)
),
fallback_to_nx=bool(os.environ.get("NETWORKX_FALLBACK_TO_NX", False)),
warnings_to_ignore={
x.strip()
for x in os.environ.get("NETWORKX_WARNINGS_TO_IGNORE", "").split(",")
if x.strip()
},
)
backend_info["networkx"] = {}
type(config.backends).__doc__ = "All installed NetworkX backends and their configs."
# NETWORKX_BACKEND_PRIORITY is the same as NETWORKX_BACKEND_PRIORITY_ALGOS
priorities = {
key[26:].lower(): val
for key, val in os.environ.items()
if key.startswith("NETWORKX_BACKEND_PRIORITY_")
}
backend_priority = config.backend_priority
backend_priority.algos = (
_comma_sep_to_list(priorities.pop("algos"))
if "algos" in priorities
else _comma_sep_to_list(
os.environ.get(
"NETWORKX_BACKEND_PRIORITY",
os.environ.get("NETWORKX_AUTOMATIC_BACKENDS", ""),
)
)
)
backend_priority.generators = _comma_sep_to_list(priorities.pop("generators", ""))
for key in sorted(priorities):
backend_priority[key] = _comma_sep_to_list(priorities[key])
return config
def _always_run(name, args, kwargs):
return True
def _load_backend(backend_name):
if backend_name in _loaded_backends:
return _loaded_backends[backend_name]
if backend_name not in backends:
raise ImportError(f"'{backend_name}' backend is not installed")
rv = _loaded_backends[backend_name] = backends[backend_name].load()
if not hasattr(rv, "can_run"):
rv.can_run = _always_run
if not hasattr(rv, "should_run"):
rv.should_run = _always_run
return rv
class _dispatchable:
_is_testing = False
class _fallback_to_nx:
"""Class property that returns ``nx.config.fallback_to_nx``."""
def __get__(self, instance, owner=None):
warnings.warn(
"`_dispatchable._fallback_to_nx` is deprecated and will be removed "
"in NetworkX v3.5. Use `nx.config.fallback_to_nx` instead.",
category=DeprecationWarning,
stacklevel=2,
)
return nx.config.fallback_to_nx
# Note that chaining `@classmethod` and `@property` was removed in Python 3.13
_fallback_to_nx = _fallback_to_nx() # type: ignore[assignment,misc]
def __new__(
cls,
func=None,
*,
name=None,
graphs="G",
edge_attrs=None,
node_attrs=None,
preserve_edge_attrs=False,
preserve_node_attrs=False,
preserve_graph_attrs=False,
preserve_all_attrs=False,
mutates_input=False,
returns_graph=False,
):
"""A decorator function that is used to redirect the execution of ``func``
function to its backend implementation.
This decorator function dispatches to
a different backend implementation based on the input graph types, and it also
manages all the ``backend_kwargs``. Usage can be any of the following decorator
forms:
- ``@_dispatchable``
- ``@_dispatchable()``
- ``@_dispatchable(name="override_name")``
- ``@_dispatchable(graphs="graph_var_name")``
- ``@_dispatchable(edge_attrs="weight")``
- ``@_dispatchable(graphs={"G": 0, "H": 1}, edge_attrs={"weight": "default"})``
with 0 and 1 giving the position in the signature function for graph
objects. When ``edge_attrs`` is a dict, keys are keyword names and values
are defaults.
Parameters
----------
func : callable, optional
The function to be decorated. If ``func`` is not provided, returns a
partial object that can be used to decorate a function later. If ``func``
is provided, returns a new callable object that dispatches to a backend
algorithm based on input graph types.
name : str, optional
The name of the algorithm to use for dispatching. If not provided,
the name of ``func`` will be used. ``name`` is useful to avoid name
conflicts, as all dispatched algorithms live in a single namespace.
For example, ``tournament.is_strongly_connected`` had a name conflict
with the standard ``nx.is_strongly_connected``, so we used
``@_dispatchable(name="tournament_is_strongly_connected")``.
graphs : str or dict or None, default "G"
If a string, the parameter name of the graph, which must be the first
argument of the wrapped function. If more than one graph is required
for the algorithm (or if the graph is not the first argument), provide
a dict keyed to argument names with argument position as values for each
graph argument. For example, ``@_dispatchable(graphs={"G": 0, "auxiliary?": 4})``
indicates the 0th parameter ``G`` of the function is a required graph,
and the 4th parameter ``auxiliary?`` is an optional graph.
To indicate that an argument is a list of graphs, do ``"[graphs]"``.
Use ``graphs=None``, if *no* arguments are NetworkX graphs such as for
graph generators, readers, and conversion functions.
edge_attrs : str or dict, optional
``edge_attrs`` holds information about edge attribute arguments
and default values for those edge attributes.
If a string, ``edge_attrs`` holds the function argument name that
indicates a single edge attribute to include in the converted graph.
The default value for this attribute is 1. To indicate that an argument
is a list of attributes (all with default value 1), use e.g. ``"[attrs]"``.
If a dict, ``edge_attrs`` holds a dict keyed by argument names, with
values that are either the default value or, if a string, the argument
name that indicates the default value.
node_attrs : str or dict, optional
Like ``edge_attrs``, but for node attributes.
preserve_edge_attrs : bool or str or dict, optional
For bool, whether to preserve all edge attributes.
For str, the parameter name that may indicate (with ``True`` or a
callable argument) whether all edge attributes should be preserved
when converting.
For dict of ``{graph_name: {attr: default}}``, indicate pre-determined
edge attributes (and defaults) to preserve for input graphs.
preserve_node_attrs : bool or str or dict, optional
Like ``preserve_edge_attrs``, but for node attributes.
preserve_graph_attrs : bool or set
For bool, whether to preserve all graph attributes.
For set, which input graph arguments to preserve graph attributes.
preserve_all_attrs : bool
Whether to preserve all edge, node and graph attributes.
This overrides all the other preserve_*_attrs.
mutates_input : bool or dict, default False
For bool, whether the function mutates an input graph argument.
For dict of ``{arg_name: arg_pos}``, arguments that indicate whether an
input graph will be mutated, and ``arg_name`` may begin with ``"not "``
to negate the logic (for example, this is used by ``copy=`` arguments).
By default, dispatching doesn't convert input graphs to a different
backend for functions that mutate input graphs.
returns_graph : bool, default False
Whether the function can return or yield a graph object. By default,
dispatching doesn't convert input graphs to a different backend for
functions that return graphs.
"""
if func is None:
return partial(
_dispatchable,
name=name,
graphs=graphs,
edge_attrs=edge_attrs,
node_attrs=node_attrs,
preserve_edge_attrs=preserve_edge_attrs,
preserve_node_attrs=preserve_node_attrs,
preserve_graph_attrs=preserve_graph_attrs,
preserve_all_attrs=preserve_all_attrs,
mutates_input=mutates_input,
returns_graph=returns_graph,
)
if isinstance(func, str):
raise TypeError("'name' and 'graphs' must be passed by keyword") from None
# If name not provided, use the name of the function
if name is None:
name = func.__name__
self = object.__new__(cls)
# standard function-wrapping stuff
# __annotations__ not used
self.__name__ = func.__name__
# self.__doc__ = func.__doc__ # __doc__ handled as cached property
self.__defaults__ = func.__defaults__
# We "magically" add `backend=` keyword argument to allow backend to be specified
if func.__kwdefaults__:
self.__kwdefaults__ = {**func.__kwdefaults__, "backend": None}
else:
self.__kwdefaults__ = {"backend": None}
self.__module__ = func.__module__
self.__qualname__ = func.__qualname__
self.__dict__.update(func.__dict__)
self.__wrapped__ = func
# Supplement docstring with backend info; compute and cache when needed
self._orig_doc = func.__doc__
self._cached_doc = None
self.orig_func = func
self.name = name
self.edge_attrs = edge_attrs
self.node_attrs = node_attrs
self.preserve_edge_attrs = preserve_edge_attrs or preserve_all_attrs
self.preserve_node_attrs = preserve_node_attrs or preserve_all_attrs
self.preserve_graph_attrs = preserve_graph_attrs or preserve_all_attrs
self.mutates_input = mutates_input
# Keep `returns_graph` private for now, b/c we may extend info on return types
self._returns_graph = returns_graph
if edge_attrs is not None and not isinstance(edge_attrs, str | dict):
raise TypeError(
f"Bad type for edge_attrs: {type(edge_attrs)}. Expected str or dict."
) from None
if node_attrs is not None and not isinstance(node_attrs, str | dict):
raise TypeError(
f"Bad type for node_attrs: {type(node_attrs)}. Expected str or dict."
) from None
if not isinstance(self.preserve_edge_attrs, bool | str | dict):
raise TypeError(
f"Bad type for preserve_edge_attrs: {type(self.preserve_edge_attrs)}."
" Expected bool, str, or dict."
) from None
if not isinstance(self.preserve_node_attrs, bool | str | dict):
raise TypeError(
f"Bad type for preserve_node_attrs: {type(self.preserve_node_attrs)}."
" Expected bool, str, or dict."
) from None
if not isinstance(self.preserve_graph_attrs, bool | set):
raise TypeError(
f"Bad type for preserve_graph_attrs: {type(self.preserve_graph_attrs)}."
" Expected bool or set."
) from None
if not isinstance(self.mutates_input, bool | dict):
raise TypeError(
f"Bad type for mutates_input: {type(self.mutates_input)}."
" Expected bool or dict."
) from None
if not isinstance(self._returns_graph, bool):
raise TypeError(
f"Bad type for returns_graph: {type(self._returns_graph)}."
" Expected bool."
) from None
if isinstance(graphs, str):
graphs = {graphs: 0}
elif graphs is None:
pass
elif not isinstance(graphs, dict):
raise TypeError(
f"Bad type for graphs: {type(graphs)}. Expected str or dict."
) from None
elif len(graphs) == 0:
raise KeyError("'graphs' must contain at least one variable name") from None
# This dict comprehension is complicated for better performance; equivalent shown below.
self.optional_graphs = set()
self.list_graphs = set()
if graphs is None:
self.graphs = {}
else:
self.graphs = {
self.optional_graphs.add(val := k[:-1]) or val
if (last := k[-1]) == "?"
else self.list_graphs.add(val := k[1:-1]) or val
if last == "]"
else k: v
for k, v in graphs.items()
}
# The above is equivalent to:
# self.optional_graphs = {k[:-1] for k in graphs if k[-1] == "?"}
# self.list_graphs = {k[1:-1] for k in graphs if k[-1] == "]"}
# self.graphs = {k[:-1] if k[-1] == "?" else k: v for k, v in graphs.items()}
# Compute and cache the signature on-demand
self._sig = None
# Which backends implement this function?
self.backends = {
backend
for backend, info in backend_info.items()
if "functions" in info and name in info["functions"]
}
if name in _registered_algorithms:
raise KeyError(
f"Algorithm already exists in dispatch registry: {name}"
) from None
# Use the magic of `argmap` to turn `self` into a function. This does result
# in small additional overhead compared to calling `_dispatchable` directly,
# but `argmap` has the magical property that it can stack with other `argmap`
# decorators "for free". Being a function is better for REPRs and type-checkers.
self = argmap(_do_nothing)(self)
_registered_algorithms[name] = self
return self
@property
def __doc__(self):
"""If the cached documentation exists, it is returned.
Otherwise, the documentation is generated using _make_doc() method,
cached, and then returned."""
if (rv := self._cached_doc) is not None:
return rv
rv = self._cached_doc = self._make_doc()
return rv
@__doc__.setter
def __doc__(self, val):
"""Sets the original documentation to the given value and resets the
cached documentation."""
self._orig_doc = val
self._cached_doc = None
@property
def __signature__(self):
"""Return the signature of the original function, with the addition of
the `backend` and `backend_kwargs` parameters."""
if self._sig is None:
sig = inspect.signature(self.orig_func)
# `backend` is now a reserved argument used by dispatching.
# assert "backend" not in sig.parameters
if not any(
p.kind == inspect.Parameter.VAR_KEYWORD for p in sig.parameters.values()
):
sig = sig.replace(
parameters=[
*sig.parameters.values(),
inspect.Parameter(
"backend", inspect.Parameter.KEYWORD_ONLY, default=None
),
inspect.Parameter(
"backend_kwargs", inspect.Parameter.VAR_KEYWORD
),
]
)
else:
*parameters, var_keyword = sig.parameters.values()
sig = sig.replace(
parameters=[
*parameters,
inspect.Parameter(
"backend", inspect.Parameter.KEYWORD_ONLY, default=None
),
var_keyword,
]
)
self._sig = sig
return self._sig
def __call__(self, /, *args, backend=None, **kwargs):
"""Returns the result of the original function, or the backend function if
the backend is specified and that backend implements `func`."""
if not backends:
# Fast path if no backends are installed
if backend is not None and backend != "networkx":
raise ImportError(f"'{backend}' backend is not installed")
return self.orig_func(*args, **kwargs)
# Use `backend_name` in this function instead of `backend`.
# This is purely for aesthetics and to make it easier to search for this
# variable since "backend" is used in many comments and log/error messages.
backend_name = backend
if backend_name is not None and backend_name not in backend_info:
raise ImportError(f"'{backend_name}' backend is not installed")
graphs_resolved = {}
for gname, pos in self.graphs.items():
if pos < len(args):
if gname in kwargs:
raise TypeError(f"{self.name}() got multiple values for {gname!r}")
graph = args[pos]
elif gname in kwargs:
graph = kwargs[gname]
elif gname not in self.optional_graphs:
raise TypeError(
f"{self.name}() missing required graph argument: {gname}"
)
else:
continue
if graph is None:
if gname not in self.optional_graphs:
raise TypeError(
f"{self.name}() required graph argument {gname!r} is None; must be a graph"
)
else:
graphs_resolved[gname] = graph
# Alternative to the above that does not check duplicated args or missing required graphs.
# graphs_resolved = {
# gname: graph
# for gname, pos in self.graphs.items()
# if (graph := args[pos] if pos < len(args) else kwargs.get(gname)) is not None
# }
# Check if any graph comes from a backend
if self.list_graphs:
# Make sure we don't lose values by consuming an iterator
args = list(args)
for gname in self.list_graphs & graphs_resolved.keys():
list_of_graphs = list(graphs_resolved[gname])
graphs_resolved[gname] = list_of_graphs
if gname in kwargs:
kwargs[gname] = list_of_graphs
else:
args[self.graphs[gname]] = list_of_graphs
graph_backend_names = {
getattr(g, "__networkx_backend__", None)
for gname, g in graphs_resolved.items()
if gname not in self.list_graphs
}
for gname in self.list_graphs & graphs_resolved.keys():
graph_backend_names.update(
getattr(g, "__networkx_backend__", None)
for g in graphs_resolved[gname]
)
else:
graph_backend_names = {
getattr(g, "__networkx_backend__", None)
for g in graphs_resolved.values()
}
backend_priority = nx.config.backend_priority.get(
self.name,
nx.config.backend_priority.generators
if self._returns_graph
else nx.config.backend_priority.algos,
)
if self._is_testing and backend_priority and backend_name is None:
# Special path if we are running networkx tests with a backend.
# This even runs for (and handles) functions that mutate input graphs.
return self._convert_and_call_for_tests(
backend_priority[0],
args,
kwargs,
fallback_to_nx=nx.config.fallback_to_nx,
)
graph_backend_names.discard(None)
if backend_name is not None:
# Must run with the given backend.
# `can_run` only used for better log and error messages.
# Check `mutates_input` for logging, not behavior.
blurb = (
"No other backends will be attempted, because the backend was "
f"specified with the `backend='{backend_name}'` keyword argument."
)
extra_message = (
f"'{backend_name}' backend raised NotImplementedError when calling "
f"`{self.name}'. {blurb}"
)
if not graph_backend_names or graph_backend_names == {backend_name}:
# All graphs are backend graphs--no need to convert!
if self._can_backend_run(backend_name, args, kwargs):
return self._call_with_backend(
backend_name, args, kwargs, extra_message=extra_message
)
if self._does_backend_have(backend_name):
extra = " for the given arguments"
else:
extra = ""
raise NotImplementedError(
f"`{self.name}' is not implemented by '{backend_name}' backend"
f"{extra}. {blurb}"
)
if self._can_convert(backend_name, graph_backend_names):
if self._can_backend_run(backend_name, args, kwargs):
if self._will_call_mutate_input(args, kwargs):
_logger.debug(
"`%s' will mutate an input graph. This prevents automatic conversion "
"to, and use of, backends listed in `nx.config.backend_priority`. "
"Using backend specified by the "
"`backend='%s'` keyword argument. This may change behavior by not "
"mutating inputs.",
self.name,
backend_name,
)
mutations = []
else:
mutations = None
rv = self._convert_and_call(
backend_name,
graph_backend_names,
args,
kwargs,
extra_message=extra_message,
mutations=mutations,
)
if mutations:
for cache, key in mutations:
# If the call mutates inputs, then remove all inputs gotten
# from cache. We do this after all conversions (and call) so
# that a graph can be gotten from a cache multiple times.
cache.pop(key, None)
return rv
if self._does_backend_have(backend_name):
extra = " for the given arguments"
else:
extra = ""
raise NotImplementedError(
f"`{self.name}' is not implemented by '{backend_name}' backend"
f"{extra}. {blurb}"
)
if len(graph_backend_names) == 1:
maybe_s = ""
graph_backend_names = f"'{next(iter(graph_backend_names))}'"
else:
maybe_s = "s"
raise TypeError(
f"`{self.name}' is unable to convert graph from backend{maybe_s} "
f"{graph_backend_names} to '{backend_name}' backend, which was "
f"specified with the `backend='{backend_name}'` keyword argument. "
f"{blurb}"
)
if self._will_call_mutate_input(args, kwargs):
# The current behavior for functions that mutate input graphs:
#
# 1. If backend is specified by `backend=` keyword, use it (done above).
# 2. If inputs are from one backend, try to use it.
# 3. If all input graphs are instances of `nx.Graph`, then run with the
# default "networkx" implementation.
#
# Do not automatically convert if a call will mutate inputs, because doing
# so would change behavior. Hence, we should fail if there are multiple input
# backends or if the input backend does not implement the function. However,
# we offer a way for backends to circumvent this if they do not implement
# this function: we will fall back to the default "networkx" implementation
# without using conversions if all input graphs are subclasses of `nx.Graph`.
blurb = (
"conversions between backends (if configured) will not be attempted, "
"because this may change behavior. You may specify a backend to use "
"by passing e.g. `backend='networkx'` keyword, but this may also "
"change behavior by not mutating inputs."
)
fallback_blurb = (
"This call will mutate inputs, so fall back to 'networkx' "
"backend (without converting) since all input graphs are "
"instances of nx.Graph and are hopefully compatible.",
)
if len(graph_backend_names) == 1:
[backend_name] = graph_backend_names
msg_template = (
f"Backend '{backend_name}' does not implement `{self.name}'%s. "
f"This call will mutate an input, so automatic {blurb}"
)
# `can_run` is only used for better log and error messages
try:
if self._can_backend_run(backend_name, args, kwargs):
return self._call_with_backend(
backend_name,
args,
kwargs,
extra_message=msg_template % " with these arguments",
)
except NotImplementedError as exc:
if all(isinstance(g, nx.Graph) for g in graphs_resolved.values()):
_logger.debug(
"Backend '%s' raised when calling `%s': %s. %s",
backend_name,
self.name,
exc,
fallback_blurb,
)
else:
raise
else:
if nx.config.fallback_to_nx and all(
# Consider dropping the `isinstance` check here to allow
# duck-type graphs, but let's wait for a backend to ask us.
isinstance(g, nx.Graph)
for g in graphs_resolved.values()
):
# Log that we are falling back to networkx
_logger.debug(
"Backend '%s' can't run `%s'. %s",
backend_name,
self.name,
fallback_blurb,
)
else:
if self._does_backend_have(backend_name):
extra = " with these arguments"
else:
extra = ""
raise NotImplementedError(msg_template % extra)
elif nx.config.fallback_to_nx and all(
# Consider dropping the `isinstance` check here to allow
# duck-type graphs, but let's wait for a backend to ask us.
isinstance(g, nx.Graph)
for g in graphs_resolved.values()
):
# Log that we are falling back to networkx
_logger.debug(
"`%s' was called with inputs from multiple backends: %s. %s",
self.name,
graph_backend_names,
fallback_blurb,
)
else:
raise RuntimeError(
f"`{self.name}' will mutate an input, but it was called with inputs "
f"from multiple backends: {graph_backend_names}. Automatic {blurb}"
)
# At this point, no backends are available to handle the call with
# the input graph types, but if the input graphs are compatible
# nx.Graph instances, fall back to networkx without converting.
return self.orig_func(*args, **kwargs)
# We may generalize fallback configuration as e.g. `nx.config.backend_fallback`
if nx.config.fallback_to_nx or not graph_backend_names:
# Use "networkx" by default if there are no inputs from backends.
# For example, graph generators should probably return NetworkX graphs
# instead of raising NotImplementedError.
backend_fallback = ["networkx"]
else:
backend_fallback = []
# ##########################
# # How this behaves today #
# ##########################
#
# The prose below describes the implementation and a *possible* way to
# generalize "networkx" as "just another backend". The code is structured
# to perhaps someday support backend-to-backend conversions (including
# simply passing objects from one backend directly to another backend;
# the dispatch machinery does not necessarily need to perform conversions),
# but since backend-to-backend matching is not yet supported, the following
# code is merely a convenient way to implement dispatch behaviors that have
# been carefully developed since NetworkX 3.0 and to include falling back
# to the default NetworkX implementation.
#
# The current behavior for functions that don't mutate input graphs:
#
# 1. If backend is specified by `backend=` keyword, use it (done above).
# 2. If input is from a backend other than "networkx", try to use it.
# - Note: if present, "networkx" graphs will be converted to the backend.
# 3. If input is from "networkx" (or no backend), try to use backends from
# `backend_priority` before running with the default "networkx" implementation.
# 4. If configured, "fall back" and run with the default "networkx" implementation.
#
# ################################################
# # How this is implemented and may work someday #
# ################################################
#
# Let's determine the order of backends we should try according
# to `backend_priority`, `backend_fallback`, and input backends.
# There are two† dimensions of priorities to consider:
# backend_priority > unspecified > backend_fallback
# and
# backend of an input > not a backend of an input
# These are combined to form five groups of priorities as such:
#
# input ~input
# +-------+-------+
# backend_priority | 1 | 2 |
# unspecified | 3 | N/A | (if only 1)
# backend_fallback | 4 | 5 |
# +-------+-------+
#
# This matches the behaviors we developed in versions 3.0 to 3.2, it
# ought to cover virtually all use cases we expect, and I (@eriknw) don't
# think it can be done any simpler (although it can be generalized further
# and made to be more complicated to capture 100% of *possible* use cases).
# Some observations:
#
# 1. If an input is in `backend_priority`, it will be used before trying a
# backend that is higher priority in `backend_priority` and not an input.
# 2. To prioritize converting from one backend to another even if both implement
# a function, list one in `backend_priority` and one in `backend_fallback`.
# 3. To disable conversions, set `backend_priority` and `backend_fallback` to [].
#
# †: There is actually a third dimension of priorities:
# should_run == True > should_run == False
# Backends with `can_run == True` and `should_run == False` are tried last.
#
seen = set()
group1 = [] # In backend_priority, and an input
group2 = [] # In backend_priority, but not an input
for name in backend_priority:
if name in seen:
continue
seen.add(name)
if name in graph_backend_names:
group1.append(name)
else:
group2.append(name)
group4 = [] # In backend_fallback, and an input
group5 = [] # In backend_fallback, but not an input
for name in backend_fallback:
if name in seen:
continue
seen.add(name)
if name in graph_backend_names:
group4.append(name)
else:
group5.append(name)
# An input, but not in backend_priority or backend_fallback.
group3 = graph_backend_names - seen
if len(group3) > 1:
# `group3` backends are not configured for automatic conversion or fallback.
# There are at least two issues if this group contains multiple backends:
#
# 1. How should we prioritize them? We have no good way to break ties.
# Although we could arbitrarily choose alphabetical or left-most,
# let's follow the Zen of Python and refuse the temptation to guess.
# 2. We probably shouldn't automatically convert to these backends,
# because we are not configured to do so.
#
# (2) is important to allow disabling all conversions by setting both
# `nx.config.backend_priority` and `nx.config.backend_fallback` to [].
#
# If there is a single backend in `group3`, then giving it priority over
# the fallback backends is what is generally expected. For example, this
# allows input graphs of `backend_fallback` backends (such as "networkx")
# to be converted to, and run with, the unspecified backend.
_logger.debug(
"Call to `%s' has inputs from multiple backends, %s, that "
"have no priority set in `nx.config.backend_priority`, "
"so automatic conversions to "
"these backends will not be attempted.",
self.name,
group3,
)
group3 = ()
try_order = list(itertools.chain(group1, group2, group3, group4, group5))
if len(try_order) > 1:
# Should we consider adding an option for more verbose logging?
# For example, we could explain the order of `try_order` in detail.
_logger.debug(
"Call to `%s' has inputs from %s backends, and will try to use "
"backends in the following order: %s",
self.name,
graph_backend_names or "no",
try_order,
)
backends_to_try_again = []
for is_not_first, backend_name in enumerate(try_order):
if is_not_first:
_logger.debug("Trying next backend: '%s'", backend_name)
try:
if not graph_backend_names or graph_backend_names == {backend_name}:
if self._can_backend_run(backend_name, args, kwargs):
return self._call_with_backend(backend_name, args, kwargs)
elif self._can_convert(
backend_name, graph_backend_names
) and self._can_backend_run(backend_name, args, kwargs):
if self._should_backend_run(backend_name, args, kwargs):
rv = self._convert_and_call(
backend_name, graph_backend_names, args, kwargs
)
if (
self._returns_graph
and graph_backend_names
and backend_name not in graph_backend_names
):
# If the function has graph inputs and graph output, we try
# to make it so the backend of the return type will match the
# backend of the input types. In case this is not possible,
# let's tell the user that the backend of the return graph
# has changed. Perhaps we could try to convert back, but
# "fallback" backends for graph generators should typically
# be compatible with NetworkX graphs.
_logger.debug(
"Call to `%s' is returning a graph from a different "
"backend! It has inputs from %s backends, but ran with "
"'%s' backend and is returning graph from '%s' backend",
self.name,
graph_backend_names,
backend_name,
backend_name,
)
return rv
# `should_run` is False, but `can_run` is True, so try again later
backends_to_try_again.append(backend_name)
except NotImplementedError as exc:
_logger.debug(
"Backend '%s' raised when calling `%s': %s",
backend_name,
self.name,
exc,
)
# We are about to fail. Let's try backends with can_run=True and should_run=False.
# This is unlikely to help today since we try to run with "networkx" before this.
for backend_name in backends_to_try_again:
_logger.debug(
"Trying backend: '%s' (ignoring `should_run=False`)", backend_name
)
try:
rv = self._convert_and_call(
backend_name, graph_backend_names, args, kwargs
)
if (
self._returns_graph
and graph_backend_names
and backend_name not in graph_backend_names
):
_logger.debug(
"Call to `%s' is returning a graph from a different "
"backend! It has inputs from %s backends, but ran with "
"'%s' backend and is returning graph from '%s' backend",
self.name,
graph_backend_names,
backend_name,
backend_name,
)
return rv
except NotImplementedError as exc:
_logger.debug(
"Backend '%s' raised when calling `%s': %s",
backend_name,
self.name,
exc,
)
# As a final effort, we could try to convert and run with `group3` backends
# that we discarded when `len(group3) > 1`, but let's not consider doing
# so until there is a reasonable request for it.
if len(unspecified_backends := graph_backend_names - seen) > 1:
raise TypeError(
f"Unable to convert inputs from {graph_backend_names} backends and "
f"run `{self.name}'. NetworkX is configured to automatically convert "
f"to {try_order} backends. To remedy this, you may enable automatic "
f"conversion to {unspecified_backends} backends by adding them to "
"`nx.config.backend_priority`, or you "
"may specify a backend to use with the `backend=` keyword argument."
)
raise NotImplementedError(
f"`{self.name}' is not implemented by {try_order} backends. To remedy "
"this, you may enable automatic conversion to more backends (including "
"'networkx') by adding them to `nx.config.backend_priority`, "
"or you may specify a backend to use with "
"the `backend=` keyword argument."
)
def _will_call_mutate_input(self, args, kwargs):
return (mutates_input := self.mutates_input) and (
mutates_input is True
or any(
# If `mutates_input` begins with "not ", then assume the argument is bool,
# otherwise treat it as a node or edge attribute if it's not None.
not (
args[arg_pos]
if len(args) > arg_pos
# This assumes that e.g. `copy=True` is the default
else kwargs.get(arg_name[4:], True)
)
if arg_name.startswith("not ")
else (args[arg_pos] if len(args) > arg_pos else kwargs.get(arg_name))
is not None
for arg_name, arg_pos in mutates_input.items()
)
)
def _can_convert(self, backend_name, graph_backend_names):
# Backend-to-backend conversion not supported yet.
# We can only convert to and from networkx.
rv = backend_name == "networkx" or graph_backend_names.issubset(
{"networkx", backend_name}
)
if not rv:
_logger.debug(
"Unable to convert from %s backends to '%s' backend",
graph_backend_names,
backend_name,
)
return rv
def _does_backend_have(self, backend_name):
"""Does the specified backend have this algorithm?"""
if backend_name == "networkx":
return True
# Inspect the backend; don't trust metadata used to create `self.backends`
backend = _load_backend(backend_name)
return hasattr(backend, self.name)
def _can_backend_run(self, backend_name, args, kwargs):
"""Can the specified backend run this algorithm with these arguments?"""
if backend_name == "networkx":
return True
backend = _load_backend(backend_name)
# `backend.can_run` and `backend.should_run` may return strings that describe
# why they can't or shouldn't be run.
if not hasattr(backend, self.name):
_logger.debug(
"Backend '%s' does not implement `%s'", backend_name, self.name
)
return False
can_run = backend.can_run(self.name, args, kwargs)
if isinstance(can_run, str) or not can_run:
reason = f", because: {can_run}" if isinstance(can_run, str) else ""
_logger.debug(
"Backend '%s' can't run `%s` with arguments: %s%s",
backend_name,
self.name,
_LazyArgsRepr(self, args, kwargs),
reason,
)
return False
return True
def _should_backend_run(self, backend_name, args, kwargs):
"""Should the specified backend run this algorithm with these arguments?
Note that this does not check ``backend.can_run``.
"""
# `backend.can_run` and `backend.should_run` may return strings that describe
# why they can't or shouldn't be run.
if backend_name == "networkx":
return True
backend = _load_backend(backend_name)
should_run = backend.should_run(self.name, args, kwargs)
if isinstance(should_run, str) or not should_run:
reason = f", because: {should_run}" if isinstance(should_run, str) else ""
_logger.debug(
"Backend '%s' shouldn't run `%s` with arguments: %s%s",
backend_name,
self.name,
_LazyArgsRepr(self, args, kwargs),
reason,
)
return False
return True
def _convert_arguments(self, backend_name, args, kwargs, *, use_cache, mutations):
"""Convert graph arguments to the specified backend.
Returns
-------
args tuple and kwargs dict
"""
bound = self.__signature__.bind(*args, **kwargs)
bound.apply_defaults()
if not self.graphs:
bound_kwargs = bound.kwargs
del bound_kwargs["backend"]
return bound.args, bound_kwargs
if backend_name == "networkx":
# `backend_interface.convert_from_nx` preserves everything
preserve_edge_attrs = preserve_node_attrs = preserve_graph_attrs = True
else:
preserve_edge_attrs = self.preserve_edge_attrs
preserve_node_attrs = self.preserve_node_attrs
preserve_graph_attrs = self.preserve_graph_attrs
edge_attrs = self.edge_attrs
node_attrs = self.node_attrs
# Convert graphs into backend graph-like object
# Include the edge and/or node labels if provided to the algorithm
if preserve_edge_attrs is False:
# e.g. `preserve_edge_attrs=False`
pass
elif preserve_edge_attrs is True:
# e.g. `preserve_edge_attrs=True`
edge_attrs = None
elif isinstance(preserve_edge_attrs, str):
if bound.arguments[preserve_edge_attrs] is True or callable(
bound.arguments[preserve_edge_attrs]
):
# e.g. `preserve_edge_attrs="attr"` and `func(attr=True)`
# e.g. `preserve_edge_attrs="attr"` and `func(attr=myfunc)`
preserve_edge_attrs = True
edge_attrs = None
elif bound.arguments[preserve_edge_attrs] is False and (
isinstance(edge_attrs, str)
and edge_attrs == preserve_edge_attrs
or isinstance(edge_attrs, dict)
and preserve_edge_attrs in edge_attrs
):
# e.g. `preserve_edge_attrs="attr"` and `func(attr=False)`
# Treat `False` argument as meaning "preserve_edge_data=False"
# and not `False` as the edge attribute to use.
preserve_edge_attrs = False
edge_attrs = None
else:
# e.g. `preserve_edge_attrs="attr"` and `func(attr="weight")`
preserve_edge_attrs = False
# Else: e.g. `preserve_edge_attrs={"G": {"weight": 1}}`
if edge_attrs is None:
# May have been set to None above b/c all attributes are preserved
pass
elif isinstance(edge_attrs, str):
if edge_attrs[0] == "[":
# e.g. `edge_attrs="[edge_attributes]"` (argument of list of attributes)
# e.g. `func(edge_attributes=["foo", "bar"])`
edge_attrs = {
edge_attr: 1 for edge_attr in bound.arguments[edge_attrs[1:-1]]
}
elif callable(bound.arguments[edge_attrs]):
# e.g. `edge_attrs="weight"` and `func(weight=myfunc)`
preserve_edge_attrs = True
edge_attrs = None
elif bound.arguments[edge_attrs] is not None:
# e.g. `edge_attrs="weight"` and `func(weight="foo")` (default of 1)
edge_attrs = {bound.arguments[edge_attrs]: 1}
elif self.name == "to_numpy_array" and hasattr(
bound.arguments["dtype"], "names"
):
# Custom handling: attributes may be obtained from `dtype`
edge_attrs = {
edge_attr: 1 for edge_attr in bound.arguments["dtype"].names
}
else:
# e.g. `edge_attrs="weight"` and `func(weight=None)`
edge_attrs = None
else:
# e.g. `edge_attrs={"attr": "default"}` and `func(attr="foo", default=7)`
# e.g. `edge_attrs={"attr": 0}` and `func(attr="foo")`
edge_attrs = {
edge_attr: bound.arguments.get(val, 1) if isinstance(val, str) else val
for key, val in edge_attrs.items()
if (edge_attr := bound.arguments[key]) is not None
}
if preserve_node_attrs is False:
# e.g. `preserve_node_attrs=False`
pass
elif preserve_node_attrs is True:
# e.g. `preserve_node_attrs=True`
node_attrs = None
elif isinstance(preserve_node_attrs, str):
if bound.arguments[preserve_node_attrs] is True or callable(
bound.arguments[preserve_node_attrs]
):
# e.g. `preserve_node_attrs="attr"` and `func(attr=True)`
# e.g. `preserve_node_attrs="attr"` and `func(attr=myfunc)`
preserve_node_attrs = True
node_attrs = None
elif bound.arguments[preserve_node_attrs] is False and (
isinstance(node_attrs, str)
and node_attrs == preserve_node_attrs
or isinstance(node_attrs, dict)
and preserve_node_attrs in node_attrs
):
# e.g. `preserve_node_attrs="attr"` and `func(attr=False)`
# Treat `False` argument as meaning "preserve_node_data=False"
# and not `False` as the node attribute to use. Is this used?
preserve_node_attrs = False
node_attrs = None
else:
# e.g. `preserve_node_attrs="attr"` and `func(attr="weight")`
preserve_node_attrs = False
# Else: e.g. `preserve_node_attrs={"G": {"pos": None}}`
if node_attrs is None:
# May have been set to None above b/c all attributes are preserved
pass
elif isinstance(node_attrs, str):
if node_attrs[0] == "[":
# e.g. `node_attrs="[node_attributes]"` (argument of list of attributes)
# e.g. `func(node_attributes=["foo", "bar"])`
node_attrs = {
node_attr: None for node_attr in bound.arguments[node_attrs[1:-1]]
}
elif callable(bound.arguments[node_attrs]):
# e.g. `node_attrs="weight"` and `func(weight=myfunc)`
preserve_node_attrs = True
node_attrs = None
elif bound.arguments[node_attrs] is not None:
# e.g. `node_attrs="weight"` and `func(weight="foo")`
node_attrs = {bound.arguments[node_attrs]: None}
else:
# e.g. `node_attrs="weight"` and `func(weight=None)`
node_attrs = None
else:
# e.g. `node_attrs={"attr": "default"}` and `func(attr="foo", default=7)`
# e.g. `node_attrs={"attr": 0}` and `func(attr="foo")`
node_attrs = {
node_attr: bound.arguments.get(val) if isinstance(val, str) else val
for key, val in node_attrs.items()
if (node_attr := bound.arguments[key]) is not None
}
# It should be safe to assume that we either have networkx graphs or backend graphs.
# Future work: allow conversions between backends.
for gname in self.graphs:
if gname in self.list_graphs:
bound.arguments[gname] = [
self._convert_graph(
backend_name,
g,
edge_attrs=edge_attrs,
node_attrs=node_attrs,
preserve_edge_attrs=preserve_edge_attrs,
preserve_node_attrs=preserve_node_attrs,
preserve_graph_attrs=preserve_graph_attrs,
graph_name=gname,
use_cache=use_cache,
mutations=mutations,
)
if getattr(g, "__networkx_backend__", "networkx") != backend_name
else g
for g in bound.arguments[gname]
]
else:
graph = bound.arguments[gname]
if graph is None:
if gname in self.optional_graphs:
continue
raise TypeError(
f"Missing required graph argument `{gname}` in {self.name} function"
)
if isinstance(preserve_edge_attrs, dict):
preserve_edges = False
edges = preserve_edge_attrs.get(gname, edge_attrs)
else:
preserve_edges = preserve_edge_attrs
edges = edge_attrs
if isinstance(preserve_node_attrs, dict):
preserve_nodes = False
nodes = preserve_node_attrs.get(gname, node_attrs)
else:
preserve_nodes = preserve_node_attrs
nodes = node_attrs
if isinstance(preserve_graph_attrs, set):
preserve_graph = gname in preserve_graph_attrs
else:
preserve_graph = preserve_graph_attrs
if getattr(graph, "__networkx_backend__", "networkx") != backend_name:
bound.arguments[gname] = self._convert_graph(
backend_name,
graph,
edge_attrs=edges,
node_attrs=nodes,
preserve_edge_attrs=preserve_edges,
preserve_node_attrs=preserve_nodes,
preserve_graph_attrs=preserve_graph,
graph_name=gname,
use_cache=use_cache,
mutations=mutations,
)
bound_kwargs = bound.kwargs
del bound_kwargs["backend"]
return bound.args, bound_kwargs
def _convert_graph(
self,
backend_name,
graph,
*,
edge_attrs,
node_attrs,
preserve_edge_attrs,
preserve_node_attrs,
preserve_graph_attrs,
graph_name,
use_cache,
mutations,
):
if (
use_cache
and (nx_cache := getattr(graph, "__networkx_cache__", None)) is not None
):
cache = nx_cache.setdefault("backends", {}).setdefault(backend_name, {})
key = _get_cache_key(
edge_attrs=edge_attrs,
node_attrs=node_attrs,
preserve_edge_attrs=preserve_edge_attrs,
preserve_node_attrs=preserve_node_attrs,
preserve_graph_attrs=preserve_graph_attrs,
)
compat_key, rv = _get_from_cache(cache, key, mutations=mutations)
if rv is not None:
if "cache" not in nx.config.warnings_to_ignore:
warnings.warn(
"Note: conversions to backend graphs are saved to cache "
"(`G.__networkx_cache__` on the original graph) by default."
"\n\nThis warning means the cached graph is being used "
f"for the {backend_name!r} backend in the "
f"call to {self.name}.\n\nFor the cache to be consistent "
"(i.e., correct), the input graph must not have been "
"manually mutated since the cached graph was created. "
"Examples of manually mutating the graph data structures "
"resulting in an inconsistent cache include:\n\n"
" >>> G[u][v][key] = val\n\n"
"and\n\n"
" >>> for u, v, d in G.edges(data=True):\n"
" ... d[key] = val\n\n"
"Using methods such as `G.add_edge(u, v, weight=val)` "
"will correctly clear the cache to keep it consistent. "
"You may also use `G.__networkx_cache__.clear()` to "
"manually clear the cache, or set `G.__networkx_cache__` "
"to None to disable caching for G. Enable or disable caching "
"globally via `nx.config.cache_converted_graphs` config.\n\n"
"To disable this warning:\n\n"
' >>> nx.config.warnings_to_ignore.add("cache")\n'
)
_logger.debug(
"Using cached converted graph (from '%s' to '%s' backend) "
"in call to `%s' for '%s' argument",
getattr(graph, "__networkx_backend__", None),
backend_name,
self.name,
graph_name,
)
return rv
if backend_name == "networkx":
# Perhaps we should check that "__networkx_backend__" attribute exists
# and return the original object if not.
if not hasattr(graph, "__networkx_backend__"):
_logger.debug(
"Unable to convert input to 'networkx' backend in call to `%s' for "
"'%s argument, because it is not from a backend (i.e., it does not "
"have `G.__networkx_backend__` attribute). Using the original "
"object: %s",
self.name,
graph_name,
graph,
)
# This may fail, but let it fail in the networkx function
return graph
backend = _load_backend(graph.__networkx_backend__)
rv = backend.convert_to_nx(graph)
else:
backend = _load_backend(backend_name)
rv = backend.convert_from_nx(
graph,
edge_attrs=edge_attrs,
node_attrs=node_attrs,
preserve_edge_attrs=preserve_edge_attrs,
preserve_node_attrs=preserve_node_attrs,
# Always preserve graph attrs when we are caching b/c this should be
# cheap and may help prevent extra (unnecessary) conversions. Because
# we do this, we don't need `preserve_graph_attrs` in the cache key.
preserve_graph_attrs=preserve_graph_attrs or use_cache,
name=self.name,
graph_name=graph_name,
)
if use_cache and nx_cache is not None and mutations is None:
_set_to_cache(cache, key, rv)
_logger.debug(
"Caching converted graph (from '%s' to '%s' backend) "
"in call to `%s' for '%s' argument",
getattr(graph, "__networkx_backend__", None),
backend_name,
self.name,
graph_name,
)
return rv
def _call_with_backend(self, backend_name, args, kwargs, *, extra_message=None):
"""Call this dispatchable function with a backend without converting inputs."""
if backend_name == "networkx":
return self.orig_func(*args, **kwargs)
backend = _load_backend(backend_name)
_logger.debug(
"Using backend '%s' for call to `%s' with arguments: %s",
backend_name,
self.name,
_LazyArgsRepr(self, args, kwargs),
)
try:
return getattr(backend, self.name)(*args, **kwargs)
except NotImplementedError as exc:
if extra_message is not None:
_logger.debug(
"Backend '%s' raised when calling `%s': %s",
backend_name,
self.name,
exc,
)
raise NotImplementedError(extra_message) from exc
raise
def _convert_and_call(
self,
backend_name,
input_backend_names,
args,
kwargs,
*,
extra_message=None,
mutations=None,
):
"""Call this dispatchable function with a backend after converting inputs.
Parameters
----------
backend_name : str
input_backend_names : set[str]
args : arguments tuple
kwargs : keywords dict
extra_message : str, optional
Additional message to log if NotImplementedError is raised by backend.
mutations : list, optional
Used to clear objects gotten from cache if inputs will be mutated.
"""
if backend_name == "networkx":
func = self.orig_func
else:
backend = _load_backend(backend_name)
func = getattr(backend, self.name)
other_backend_names = input_backend_names - {backend_name}
_logger.debug(
"Converting input graphs from %s backend%s to '%s' backend for call to `%s'",
other_backend_names
if len(other_backend_names) > 1
else f"'{next(iter(other_backend_names))}'",
"s" if len(other_backend_names) > 1 else "",
backend_name,
self.name,
)
try:
converted_args, converted_kwargs = self._convert_arguments(
backend_name,
args,
kwargs,
use_cache=nx.config.cache_converted_graphs,
mutations=mutations,
)
except NotImplementedError as exc:
# Only log the exception if we are adding an extra message
# because we don't want to lose any information.
_logger.debug(
"Failed to convert graphs from %s to '%s' backend for call to `%s'"
+ ("" if extra_message is None else ": %s"),
input_backend_names,
backend_name,
self.name,
*(() if extra_message is None else (exc,)),
)
if extra_message is not None:
raise NotImplementedError(extra_message) from exc
raise
if backend_name != "networkx":
_logger.debug(
"Using backend '%s' for call to `%s' with arguments: %s",
backend_name,
self.name,
_LazyArgsRepr(self, converted_args, converted_kwargs),
)
try:
return func(*converted_args, **converted_kwargs)
except NotImplementedError as exc:
if extra_message is not None:
_logger.debug(
"Backend '%s' raised when calling `%s': %s",
backend_name,
self.name,
exc,
)
raise NotImplementedError(extra_message) from exc
raise
def _convert_and_call_for_tests(
self, backend_name, args, kwargs, *, fallback_to_nx=False
):
"""Call this dispatchable function with a backend; for use with testing."""
backend = _load_backend(backend_name)
if not self._can_backend_run(backend_name, args, kwargs):
if fallback_to_nx or not self.graphs:
if fallback_to_nx:
_logger.debug(
"Falling back to use 'networkx' instead of '%s' backend "
"for call to `%s' with arguments: %s",
backend_name,
self.name,
_LazyArgsRepr(self, args, kwargs),
)
return self.orig_func(*args, **kwargs)
import pytest
msg = f"'{self.name}' not implemented by {backend_name}"
if hasattr(backend, self.name):
msg += " with the given arguments"
pytest.xfail(msg)
from collections.abc import Iterable, Iterator, Mapping
from copy import copy, deepcopy
from io import BufferedReader, BytesIO, StringIO, TextIOWrapper
from itertools import tee
from random import Random
import numpy as np
from numpy.random import Generator, RandomState
from scipy.sparse import sparray
# We sometimes compare the backend result to the original result,
# so we need two sets of arguments. We tee iterators and copy
# random state so that they may be used twice.
if not args:
args1 = args2 = args
else:
args1, args2 = zip(
*(
(arg, deepcopy(arg))
if isinstance(arg, RandomState)
else (arg, copy(arg))
if isinstance(arg, BytesIO | StringIO | Random | Generator)
else tee(arg)
if isinstance(arg, Iterator)
and not isinstance(arg, BufferedReader | TextIOWrapper)
else (arg, arg)
for arg in args
)
)
if not kwargs:
kwargs1 = kwargs2 = kwargs
else:
kwargs1, kwargs2 = zip(
*(
((k, v), (k, deepcopy(v)))
if isinstance(v, RandomState)
else ((k, v), (k, copy(v)))
if isinstance(v, BytesIO | StringIO | Random | Generator)
else ((k, (teed := tee(v))[0]), (k, teed[1]))
if isinstance(v, Iterator)
and not isinstance(v, BufferedReader | TextIOWrapper)
else ((k, v), (k, v))
for k, v in kwargs.items()
)
)
kwargs1 = dict(kwargs1)
kwargs2 = dict(kwargs2)
try:
converted_args, converted_kwargs = self._convert_arguments(
backend_name, args1, kwargs1, use_cache=False, mutations=None
)
_logger.debug(
"Using backend '%s' for call to `%s' with arguments: %s",
backend_name,
self.name,
_LazyArgsRepr(self, converted_args, converted_kwargs),
)
result = getattr(backend, self.name)(*converted_args, **converted_kwargs)
except NotImplementedError as exc:
if fallback_to_nx:
_logger.debug(
"Graph conversion failed; falling back to use 'networkx' instead "
"of '%s' backend for call to `%s'",
backend_name,
self.name,
)
return self.orig_func(*args2, **kwargs2)
import pytest
pytest.xfail(
exc.args[0] if exc.args else f"{self.name} raised {type(exc).__name__}"
)
# Verify that `self._returns_graph` is correct. This compares the return type
# to the type expected from `self._returns_graph`. This handles tuple and list
# return types, but *does not* catch functions that yield graphs.
if (
self._returns_graph
!= (
isinstance(result, nx.Graph)
or hasattr(result, "__networkx_backend__")
or isinstance(result, tuple | list)
and any(
isinstance(x, nx.Graph) or hasattr(x, "__networkx_backend__")
for x in result
)
)
and not (
# May return Graph or None
self.name in {"check_planarity", "check_planarity_recursive"}
and any(x is None for x in result)
)
and not (
# May return Graph or dict
self.name in {"held_karp_ascent"}
and any(isinstance(x, dict) for x in result)
)
and self.name
not in {
# yields graphs
"all_triads",
"general_k_edge_subgraphs",
# yields graphs or arrays
"nonisomorphic_trees",
}
):
raise RuntimeError(f"`returns_graph` is incorrect for {self.name}")
def check_result(val, depth=0):
if isinstance(val, np.number):
raise RuntimeError(
f"{self.name} returned a numpy scalar {val} ({type(val)}, depth={depth})"
)
if isinstance(val, np.ndarray | sparray):
return
if isinstance(val, nx.Graph):
check_result(val._node, depth=depth + 1)
check_result(val._adj, depth=depth + 1)
return
if isinstance(val, Iterator):
raise NotImplementedError
if isinstance(val, Iterable) and not isinstance(val, str):
for x in val:
check_result(x, depth=depth + 1)
if isinstance(val, Mapping):
for x in val.values():
check_result(x, depth=depth + 1)
def check_iterator(it):
for val in it:
try:
check_result(val)
except RuntimeError as exc:
raise RuntimeError(
f"{self.name} returned a numpy scalar {val} ({type(val)})"
) from exc
yield val
if self.name in {"from_edgelist"}:
# numpy scalars are explicitly given as values in some tests
pass
elif isinstance(result, Iterator):
result = check_iterator(result)
else:
try:
check_result(result)
except RuntimeError as exc:
raise RuntimeError(
f"{self.name} returned a numpy scalar {result} ({type(result)})"
) from exc
check_result(result)
if self.name in {
"edmonds_karp",
"barycenter",
"contracted_edge",
"contracted_nodes",
"stochastic_graph",
"relabel_nodes",
"maximum_branching",
"incremental_closeness_centrality",
"minimal_branching",
"minimum_spanning_arborescence",
"recursive_simple_cycles",
"connected_double_edge_swap",
}:
# Special-case algorithms that mutate input graphs
bound = self.__signature__.bind(*converted_args, **converted_kwargs)
bound.apply_defaults()
bound2 = self.__signature__.bind(*args2, **kwargs2)
bound2.apply_defaults()
if self.name in {
"minimal_branching",
"minimum_spanning_arborescence",
"recursive_simple_cycles",
"connected_double_edge_swap",
}:
G1 = backend.convert_to_nx(bound.arguments["G"])
G2 = bound2.arguments["G"]
G2._adj = G1._adj
if G2.is_directed():
G2._pred = G1._pred
nx._clear_cache(G2)
elif self.name == "edmonds_karp":
R1 = backend.convert_to_nx(bound.arguments["residual"])
R2 = bound2.arguments["residual"]
if R1 is not None and R2 is not None:
for k, v in R1.edges.items():
R2.edges[k]["flow"] = v["flow"]
R2.graph.update(R1.graph)
nx._clear_cache(R2)
elif self.name == "barycenter" and bound.arguments["attr"] is not None:
G1 = backend.convert_to_nx(bound.arguments["G"])
G2 = bound2.arguments["G"]
attr = bound.arguments["attr"]
for k, v in G1.nodes.items():
G2.nodes[k][attr] = v[attr]
nx._clear_cache(G2)
elif (
self.name in {"contracted_nodes", "contracted_edge"}
and not bound.arguments["copy"]
):
# Edges and nodes changed; node "contraction" and edge "weight" attrs
G1 = backend.convert_to_nx(bound.arguments["G"])
G2 = bound2.arguments["G"]
G2.__dict__.update(G1.__dict__)
nx._clear_cache(G2)
elif self.name == "stochastic_graph" and not bound.arguments["copy"]:
G1 = backend.convert_to_nx(bound.arguments["G"])
G2 = bound2.arguments["G"]
for k, v in G1.edges.items():
G2.edges[k]["weight"] = v["weight"]
nx._clear_cache(G2)
elif (
self.name == "relabel_nodes"
and not bound.arguments["copy"]
or self.name in {"incremental_closeness_centrality"}
):
G1 = backend.convert_to_nx(bound.arguments["G"])
G2 = bound2.arguments["G"]
if G1 is G2:
return G2
G2._node.clear()
G2._node.update(G1._node)
G2._adj.clear()
G2._adj.update(G1._adj)
if hasattr(G1, "_pred") and hasattr(G2, "_pred"):
G2._pred.clear()
G2._pred.update(G1._pred)
if hasattr(G1, "_succ") and hasattr(G2, "_succ"):
G2._succ.clear()
G2._succ.update(G1._succ)
nx._clear_cache(G2)
if self.name == "relabel_nodes":
return G2
return backend.convert_to_nx(result)
converted_result = backend.convert_to_nx(result)
if isinstance(converted_result, nx.Graph) and self.name not in {
"boykov_kolmogorov",
"preflow_push",
"quotient_graph",
"shortest_augmenting_path",
"spectral_graph_forge",
# We don't handle tempfile.NamedTemporaryFile arguments
"read_gml",
"read_graph6",
"read_sparse6",
# We don't handle io.BufferedReader or io.TextIOWrapper arguments
"bipartite_read_edgelist",
"read_adjlist",
"read_edgelist",
"read_graphml",
"read_multiline_adjlist",
"read_pajek",
"from_pydot",
"pydot_read_dot",
"agraph_read_dot",
# graph comparison fails b/c of nan values
"read_gexf",
}:
# For graph return types (e.g. generators), we compare that results are
# the same between the backend and networkx, then return the original
# networkx result so the iteration order will be consistent in tests.
G = self.orig_func(*args2, **kwargs2)
if not nx.utils.graphs_equal(G, converted_result):
assert G.number_of_nodes() == converted_result.number_of_nodes()
assert G.number_of_edges() == converted_result.number_of_edges()
assert G.graph == converted_result.graph
assert G.nodes == converted_result.nodes
assert G.adj == converted_result.adj
assert type(G) is type(converted_result)
raise AssertionError("Graphs are not equal")
return G
return converted_result
def _make_doc(self):
"""Generate the backends section at the end for functions having an alternate
backend implementation(s) using the `backend_info` entry-point."""
if not self.backends:
return self._orig_doc
lines = [
"Backends",
"--------",
]
for backend in sorted(self.backends):
info = backend_info[backend]
if "short_summary" in info:
lines.append(f"{backend} : {info['short_summary']}")
else:
lines.append(backend)
if "functions" not in info or self.name not in info["functions"]:
lines.append("")
continue
func_info = info["functions"][self.name]
# Renaming extra_docstring to additional_docs
if func_docs := (
func_info.get("additional_docs") or func_info.get("extra_docstring")
):
lines.extend(
f" {line}" if line else line for line in func_docs.split("\n")
)
add_gap = True
else:
add_gap = False
# Renaming extra_parameters to additional_parameters
if extra_parameters := (
func_info.get("extra_parameters")
or func_info.get("additional_parameters")
):
if add_gap:
lines.append("")
lines.append(" Additional parameters:")
for param in sorted(extra_parameters):
lines.append(f" {param}")
if desc := extra_parameters[param]:
lines.append(f" {desc}")
lines.append("")
else:
lines.append("")
if func_url := func_info.get("url"):
lines.append(f"[`Source <{func_url}>`_]")
lines.append("")
lines.pop() # Remove last empty line
to_add = "\n ".join(lines)
if not self._orig_doc:
return f"The original docstring for {self.name} was empty.\n\n {to_add}"
return f"{self._orig_doc.rstrip()}\n\n {to_add}"
def __reduce__(self):
"""Allow this object to be serialized with pickle.
This uses the global registry `_registered_algorithms` to deserialize.
"""
return _restore_dispatchable, (self.name,)
def _restore_dispatchable(name):
return _registered_algorithms[name].__wrapped__
def _get_cache_key(
*,
edge_attrs,
node_attrs,
preserve_edge_attrs,
preserve_node_attrs,
preserve_graph_attrs,
):
"""Return key used by networkx caching given arguments for ``convert_from_nx``."""
# edge_attrs: dict | None
# node_attrs: dict | None
# preserve_edge_attrs: bool (False if edge_attrs is not None)
# preserve_node_attrs: bool (False if node_attrs is not None)
return (
frozenset(edge_attrs.items())
if edge_attrs is not None
else preserve_edge_attrs,
frozenset(node_attrs.items())
if node_attrs is not None
else preserve_node_attrs,
)
def _get_from_cache(cache, key, *, backend_name=None, mutations=None):
"""Search the networkx cache for a graph that is compatible with ``key``.
Parameters
----------
cache : dict
If ``backend_name`` is given, then this is treated as ``G.__networkx_cache__``,
but if ``backend_name`` is None, then this is treated as the resolved inner
cache such as ``G.__networkx_cache__["backends"][backend_name]``.
key : tuple
Cache key from ``_get_cache_key``.
backend_name : str, optional
Name of the backend to control how ``cache`` is interpreted.
mutations : list, optional
Used internally to clear objects gotten from cache if inputs will be mutated.
Returns
-------
tuple or None
The key of the compatible graph found in the cache.
graph or None
A compatible graph or None.
"""
if backend_name is not None:
cache = cache.get("backends", {}).get(backend_name, {})
if not cache:
return None, None
# Do a simple search for a cached graph with compatible data.
# For example, if we need a single attribute, then it's okay
# to use a cached graph that preserved all attributes.
# This looks for an exact match first.
edge_key, node_key = key
for compat_key in itertools.product(
(edge_key, True) if edge_key is not True else (True,),
(node_key, True) if node_key is not True else (True,),
):
if (rv := cache.get(compat_key)) is not None:
if mutations is not None:
# Remove this item from the cache (after all conversions) if
# the call to this dispatchable function will mutate an input.
mutations.append((cache, compat_key))
return compat_key, rv
if edge_key is not True and node_key is not True:
# Iterate over the items in `cache` to see if any are compatible.
# For example, if no edge attributes are needed, then a graph
# with any edge attribute will suffice. We use the same logic
# below (but switched) to clear unnecessary items from the cache.
# Use `list(cache.items())` to be thread-safe.
for (ekey, nkey), graph in list(cache.items()):
if edge_key is False or ekey is True:
pass # Cache works for edge data!
elif edge_key is True or ekey is False or not edge_key.issubset(ekey):
continue # Cache missing required edge data; does not work
if node_key is False or nkey is True:
pass # Cache works for node data!
elif node_key is True or nkey is False or not node_key.issubset(nkey):
continue # Cache missing required node data; does not work
if mutations is not None:
# Remove this item from the cache (after all conversions) if
# the call to this dispatchable function will mutate an input.
mutations.append((cache, (ekey, nkey)))
return (ekey, nkey), graph
return None, None
def _set_to_cache(cache, key, graph, *, backend_name=None):
"""Set a backend graph to the cache, and remove unnecessary cached items.
Parameters
----------
cache : dict
If ``backend_name`` is given, then this is treated as ``G.__networkx_cache__``,
but if ``backend_name`` is None, then this is treated as the resolved inner
cache such as ``G.__networkx_cache__["backends"][backend_name]``.
key : tuple
Cache key from ``_get_cache_key``.
graph : graph
backend_name : str, optional
Name of the backend to control how ``cache`` is interpreted.
Returns
-------
dict
The items that were removed from the cache.
"""
if backend_name is not None:
cache = cache.setdefault("backends", {}).setdefault(backend_name, {})
# Remove old cached items that are no longer necessary since they
# are dominated/subsumed/outdated by what was just calculated.
# This uses the same logic as above, but with keys switched.
# Also, don't update the cache here if the call will mutate an input.
removed = {}
edge_key, node_key = key
cache[key] = graph # Set at beginning to be thread-safe
for cur_key in list(cache):
if cur_key == key:
continue
ekey, nkey = cur_key
if ekey is False or edge_key is True:
pass
elif ekey is True or edge_key is False or not ekey.issubset(edge_key):
continue
if nkey is False or node_key is True:
pass
elif nkey is True or node_key is False or not nkey.issubset(node_key):
continue
# Use pop instead of del to try to be thread-safe
if (graph := cache.pop(cur_key, None)) is not None:
removed[cur_key] = graph
return removed
class _LazyArgsRepr:
"""Simple wrapper to display arguments of dispatchable functions in logging calls."""
def __init__(self, func, args, kwargs):
self.func = func
self.args = args
self.kwargs = kwargs
self.value = None
def __repr__(self):
if self.value is None:
bound = self.func.__signature__.bind_partial(*self.args, **self.kwargs)
inner = ", ".join(f"{key}={val!r}" for key, val in bound.arguments.items())
self.value = f"({inner})"
return self.value
if os.environ.get("_NETWORKX_BUILDING_DOCS_"):
# When building docs with Sphinx, use the original function with the
# dispatched __doc__, b/c Sphinx renders normal Python functions better.
# This doesn't show e.g. `*, backend=None, **backend_kwargs` in the
# signatures, which is probably okay. It does allow the docstring to be
# updated based on the installed backends.
_orig_dispatchable = _dispatchable
def _dispatchable(func=None, **kwargs): # type: ignore[no-redef]
if func is None:
return partial(_dispatchable, **kwargs)
dispatched_func = _orig_dispatchable(func, **kwargs)
func.__doc__ = dispatched_func.__doc__
return func
_dispatchable.__doc__ = _orig_dispatchable.__new__.__doc__ # type: ignore[method-assign,assignment]
_sig = inspect.signature(_orig_dispatchable.__new__)
_dispatchable.__signature__ = _sig.replace( # type: ignore[method-assign,assignment]
parameters=[v for k, v in _sig.parameters.items() if k != "cls"]
)
|