File size: 25,729 Bytes
8e9ec0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
English | [简体中文](README.md)
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/logos/angelslim_logo_light.png">
<img alt="AngelSlim" src="./docs/source/assets/logos/angelslim_logo.png" width=55%>
</picture>
</p>
<h3 align="center">
Dedicated to building a more intuitive, comprehensive, and efficient LLMs compression toolkit.
</h3>
<p align="center">
📖 <a href="https://angelslim.readthedocs.io/">Documentation</a>   |   🤗 <a href="https://huggingface.co/AngelSlim">Hugging Face</a>   |   🤖 <a href="https://modelscope.cn/organization/AngelSlim">ModelScope</a>   |   💬 <a href="./docs/source/assets/angel_slim_wechat.png">WeChat</a> |   🫨 <a href="https://discord.com/invite/dHVNeuNdFt">Discord</a>
<br>
</p>
## Table of Contents
- [Latest Updates](#latest-updates)
- [Key Features](#key-features)
- [Supported Models](#supported-models)
- [How to Use](#how-to-use)
- [Install AngelSlim](#install-angelslim)
- [Quick Start](#quick-start)
- [deployment & Evaluation](#deployment)
- [Benchmark](#benchmark)
- [License](#license)
- [Citation](#citation)
- [Technical Discussion](#technical-discussion)
## 📣Latest Updates
- [25/08/04] We now support quantization for `Hunyuan 0.5B/1.8B/4B/7B` and multimodal model `Qwen2.5VL 3B/7B/32B/72B`, including `FP8/INT4` algorithms. We also opensource `Hunyuan 1.8B/4B/7B` series Eagle3 model weight.
- [25/07/04] We now support quantization for `Hunyuan/Qwen2.5/Qwen3/DeepSeek-R1-Distill-Qwen` and other models, including `INT8/FP8/INT4` algorithms. We also opensource `Qwen3` series Eagle3 model weight.
Coming soon:
- [ ] Support W4A8 quantization for DeepSeek-R1.
- [ ] Release of new algorithm for speculative sampling.
## 🌟Key Features
- **Highly Integrated**: This toolkit integrates mainstream compression algorithms into a unified framework, offering developers one-click access with exceptional ease of use.
- **Continuous Innovation**: Beyond integrating widely-used industry algorithms, we are continuously researching better compression algorithms, which will be gradually open-sourced in the future.
- **Performance-Driven**: We continuously optimize end-to-end performance in model compression workflows and algorithm deployment, such as enabling quantization of models like Qwen3-235B and DeepSeek-R1 on a single GPU.
## 💼Supported Models
### Quantization
Currently supports the following LLMs, including Hunyuan-Dense, Hunyuan-MoE, Qwen3-Dense, Qwen3-MoE, Qwen2.5, DeepSeek-R1 distilled Qwen models, and QwQ::
| Model | FP8-Dynamic | FP8-Static | INT8-Dynamic | INT4-GPTQ | INT4-AWQ |
| --------------------------------------------------------------------------------------------------------------------------- | ----------- | ---------- | ------------ | --------- | -------- |
| [Hunyuan-Dense](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Hunyuan-MoE](https://huggingface.co/collections/tencent/hunyuan-a13b-685ec38e5b46321e3ea7c4be) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Qwen3-Dense](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Qwen3-MoE](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Qwen2.5](https://huggingface.co/collections/AngelSlim/qwen2-25-quant-68652d6cbdf5c0d4b1c4499a) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [DeepSeek-R1-Distill-Qwen](https://huggingface.co/collections/AngelSlim/deepseek-r1-distill-quant-68652f16a9c206b030b05f7f) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [QwQ](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8) | ✅ | ✅ | ✅ | ✅ | ✅ |
### Speculative Decoding
#### Eagle3
The Eagle3 weights for the Qwen3 series model are now available.
| Qwen3 Models | Hunyuan Models |
| ----------|----------|
| ✅ [Qwen3-1.7B](https://huggingface.co/AngelSlim/Qwen3-1.7B_eagle3) |✅ [Hunyuan-1.8B-Instruct](https://huggingface.co/AngelSlim/Hunyuan-1.8B-Instruct_eagle3) |
| ✅ [Qwen3-4B](https://huggingface.co/AngelSlim/Qwen3-4B_eagle3) |✅ [Hunyuan-4B-Instruct](https://huggingface.co/AngelSlim/Hunyuan-4B-Instruct_eagle3) |
| ✅ [Qwen3-8B](https://huggingface.co/AngelSlim/Qwen3-8B_eagle3) |✅ [Hunyuan-7B-Instruct](https://huggingface.co/AngelSlim/Hunyuan-7B-Instruct_eagle3) |
| ✅ [Qwen3-14B](https://huggingface.co/AngelSlim/Qwen3-14B_eagle3) |
| ✅ [Qwen3-32B](https://huggingface.co/AngelSlim/Qwen3-32B_eagle3) |
| ✅ [Qwen3-30B-A3B](https://huggingface.co/AngelSlim/Qwen3-a3B_eagle3) |
## 🛎️How to Use
### Install AngelSlim
We recommend using `pip` to install the latest stable version of `AngelSlim`:
```shell
pip install angelslim
```
Alternatively, you can clone the repository and install from source in editable mode:
```shell
cd AngelSlim && python setup.py install
```
For more detailed installation instructions, please refer to the [Installation Documentation](https://angelslim.readthedocs.io/zh-cn/latest/getting_started/installation.html).
### Quick Start
After installing `AngelSlim`, you can quickly start by running the following script to perform static `FP8` quantization on the `Qwen3-1.7B` model:
* One-click Start
```shell
python3 tools/run.py -c configs/qwen3/fp8_static/qwen3-1_7b_fp8_static.yaml
```
This example will load the HuggingFace model and perform activation value calibration using the `dataset` specified in the config file, saving the quantized model weights.
* Code-based Start
To perform dynamic `FP8` quantization on `Qwen3-1.7B`:
```python
from angelslim.engine import Engine
slim_engine = Engine()
# Prepare model
slim_engine.prepare_model(model_name="Qwen", model_path="Qwen/Qwen3-1.7B",)
# Initialize compressor
slim_engine.prepare_compressor("PTQ", default_method="fp8_dynamic")
# Compress model
slim_engine.run()
# Save compressed model
slim_engine.save("./output")
```
For more details, please refer to the [Quick Start Documentation](https://angelslim.readthedocs.io/zh-cn/latest/getting_started/quickstrat.html).
### Deployment and Testing
### 1. Offline Inference
If you need to load a quantized model via `transformers`, please set the `deploy_backend: huggingface` in the `global` configuration before quantizing the model, or manually modify the `ignored_layers` field in the `config.json` file located in the quantized model output directory to `ignore`.
To test offline inference with a quantized model loaded via `transformers`, run the following command:
```shell
python deploy/offline.py $MODEL_PATH
```
Where `MODEL_PATH` is the path to the quantized model output.
#### 2. API Service Deployment
After specifying the quantized model path `MODEL_PATH`, you can deploy an OpenAI-compatible API service using the following LLMs inference frameworks:
**vLLM**
Use the following script to launch a [vLLM](https://github.com/vllm-project/vllm) server, recommended version `vllm>=0.8.5.post1`. For MOE INT8 quantized models, vllm>=0.9.0 is required.
```shell
bash deploy/run_vllm.sh $MODEL_PATH
```
**SGLang**
Use the following script to launch a [SGLang](https://github.com/sgl-project/sglang) server, recommended version `sglang>=0.4.6.post1`.
```shell
bash deploy/run_sglang.sh $MODEL_PATH
```
#### 3. Service Invocation
Invoke requests via [OpenAI's API format](https://platform.openai.com/docs/api-reference/introduction):
```shell
bash deploy/openai.sh $MODEL_PATH
```
#### 4. Performance Evaluation
Evaluate the performance of quantized model using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), recommended version`lm-eval>=0.4.8`:
```shell
bash deploy/lm_eval.sh $MODEL_PATH
```
For more detaileds, please refer to the [Deployment Documentation](https://angelslim.readthedocs.io/zh-cn/latest/deployment/deploy.html).
## 📈 Benchmark
### (1) Quantization
The performance test results for selected models are shown below. For the complete benchmark, refer to the [Benchmark documentation](https://angelslim.readthedocs.io/zh-cn/latest/performance/quantization/benchmarks.html)
#### Hunyuan Series Models
Benchmark results for the `Hunyuan-Instruct` model with `FP8`, `INT4-AWQ` and `INT4-GPTQ` quantization algorithms on datasets including`OlympiadBench`, `AIME 2024` and `DROP`:
<table>
<thead>
<tr><th>Model</th><th>Quantization</th><th>OlympiadBench</th><th>AIME 2024</th><th>DROP</th><th>GPQA-Diamond</th></tr>
</thead>
<tbody>
<tr><td rowspan="4">Hunyuan-A13B-Instruct</td>
<td>BF16</td><td>82.7</td><td>87.30</td><td>91.1</td><td>71.2</td></tr>
<tr><td>FP8-Static</td><td>83.0</td><td>86.7</td><td>91.1</td><td>-</td></tr>
<tr><td>Int4-GPTQ</td><td>82.7</td><td>86.7</td><td>91.1</td><td>-</td></tr>
<tr><td>Int4-AWQ</td><td>82.6</td><td>85.6</td><td>91.0</td><td>-</td></tr>
</tbody>
<tbody>
<tr><td rowspan="4">Hunyuan-7B-Instruct</td>
<td>BF16</td> <td>76.5</td><td>81.1</td><td>85.9</td><td>60.1</td></tr>
<tr><td>FP8-Static</td><td>76.6</td><td>80.9</td><td>86.0</td><td>60.1</td></tr>
<tr><td>Int4-GPTQ</td><td>76.2</td><td>81.0</td><td>85.7</td><td>60.0</td></tr>
<tr><td>Int4-AWQ</td><td>76.4</td><td>80.9</td><td>85.9</td><td>60.1</td></tr>
</tbody>
<tbody>
<tr><td rowspan="4">Hunyuan-4B-Instruct</td>
<td>BF16</td> <td>73.1</td><td>78.3</td><td>78.2</td><td>61.1</td></tr>
<tr><td>FP8-Static</td><td>73.1</td><td>76.6</td><td>78.3</td><td>60.2</td></tr>
<tr><td>Int4-GPTQ</td><td>72.9</td><td>-</td><td>78.1</td><td>58.1</td></tr>
<tr><td>Int4-AWQ</td><td>72.8</td><td>-</td><td>78.2</td><td>-</td></tr>
</tbody>
<tbody>
<tr><td rowspan="4">Hunyuan-1.8B-Instruct</td>
<td>BF16</td> <td>63.4</td><td>56.7</td><td>76.7</td><td>47.2</td></tr>
<tr><td>FP8-Static</td><td>62.5</td><td>55.2</td><td>75.1</td><td>47.7</td></tr>
<tr><td>Int4-GPTQ</td><td>60.9</td><td>-</td><td>73.0</td><td>44.4</td></tr>
<tr><td>Int4-AWQ</td><td>61.7</td><td>-</td><td>71.7</td><td>43.6</td></tr>
</tbody>
<tbody>
<tr><td rowspan="4">Hunyuan-0.5B-Instruct</td>
<td>BF16</td> <td>29.6</td><td>17.2</td><td>52.8</td><td>23.3</td></tr>
<tr><td>FP8-Static</td><td>29.6</td><td>17.2</td><td>51.6</td><td>22.5</td></tr>
<tr><td>Int4-GPTQ</td><td>26.8</td><td>-</td><td>50.9</td><td>23.3</td></tr>
<tr><td>Int4-AWQ</td><td>26.3</td><td>-</td><td>48.9</td><td>23.3</td></tr>
</tbody>
</table>
#### Qwen3 Series Models
Benchmark results for Qwen3 series models with `FP8-Static`, `FP8-Dynamic`, `INT4-GPTQ`, and `INT4-AWQ` quantization algorithms on datasets including `CEVAL`, `MMLU`, `GSM8K`, and `HUMANEVAL`:
<table>
<thead>
<tr><th>Model</th><th>Quantization</th><th>CEVAL</th><th>MMLU</th><th>GSM8K</th><th>HUMANEVAL</th></tr>
</thead>
<tbody>
<tr><td rowspan="4">Qwen3-0.6B</td><td>BF16</td><td>45.84</td><td>47.21</td><td>42.99</td><td>19.51</td></tr>
<tr><td>FP8-Static</td><td>45.99</td><td>46.87</td><td>38.06</td><td>18.90</td></tr>
<tr><td>FP8-Dynamic</td><td>45.99</td><td>46.93</td><td>38.29</td><td>20.73</td></tr>
<tr><td>INT8-Dynamic</td><td>45.17</td><td>46.95</td><td>41.17</td><td>21.34</td></tr>
<tr><td rowspan="6">Qwen3-8B</td><td>BF16</td><td>79.27</td><td>74.78</td><td>87.79</td><td>63.41</td></tr>
<tr><td>FP8-Static</td><td>78.23</td><td>74.79</td><td>86.96</td><td>62.20</td></tr>
<tr><td>FP8-Dynamic</td><td>78.45</td><td>74.75</td><td>87.64</td><td>62.80</td></tr>
<tr><td>INT8-Dynamic</td><td>78.01</td><td>74.84</td><td>86.96</td><td>67.07</td></tr>
<tr><td>INT4-GPTQ</td><td>77.19</td><td>73.26</td><td>86.43</td><td>62.20</td></tr>
<tr><td>INT4-AWQ</td><td>76.15</td><td>73.59</td><td>86.96</td><td>63.41</td></tr>
<tr><td rowspan="6">Qwen3-14B</td><td>BF16</td><td>83.06</td><td>78.90</td><td>88.40</td><td>55.49</td></tr>
<tr><td>FP8-Static</td><td>82.62</td><td>78.57</td><td>89.46</td><td>57.32</td></tr>
<tr><td>FP8-Dynamic</td><td>82.24</td><td>78.92</td><td>88.32</td><td>52.44</td></tr>
<tr><td>INT8-Dynamic</td><td>81.87</td><td>78.13</td><td>86.28</td><td>56.10</td></tr>
<tr><td>INT4-GPTQ</td><td>81.05</td><td>78.02</td><td>87.34</td><td>57.93</td></tr>
<tr><td>INT4-AWQ</td><td>82.02</td><td>77.68</td><td>84.23</td><td>61.59</td></tr>
<tr><td rowspan="5">Qwen3-32B</td><td>BF16</td><td>86.55</td><td>82.00</td><td>74.53</td><td>37.80</td></tr>
<tr><td>FP8-Static</td><td>86.92</td><td>81.78</td><td>70.20</td><td>39.63</td></tr>
<tr><td>FP8-Dynamic</td><td>86.55</td><td>81.89</td><td>70.43</td><td>38.41</td></tr>
<tr><td>INT4-GPTQ</td><td>86.18</td><td>81.01</td><td>-</td><td>43.29</td></tr>
<tr><td>INT4-AWQ</td><td>86.18</td><td>81.54</td><td>-</td><td>36.59</td></tr>
<tr><td rowspan="4">Qwen3-30B-A3B</td><td>BF16</td><td>83.66</td><td>79.36</td><td>89.99</td><td>31.71</td></tr>
<tr><td>FP8-Static</td><td>83.95</td><td>79.47</td><td>89.01</td><td>31.10</td></tr>
<tr><td>FP8-Dynamic</td><td>84.10</td><td>79.40</td><td>89.16</td><td>32.93</td></tr>
<tr><td>INT8-Dynamic</td><td>83.36</td><td>79.48</td><td>89.16</td><td>34.15</td></tr>
<tr><td rowspan="4">Qwen3-235B-A22B</td><td>BF16</td><td>89.60</td><td>86.28</td><td>85.29</td><td>27.44</td></tr>
<tr><td>FP8-Static</td><td>89.67</td><td>86.19</td><td>86.96</td><td>27.44</td></tr>
<tr><td>FP8-Dynamic</td><td>89.67</td><td>86.18</td><td>85.22</td><td>28.05</td></tr>
<tr><td>INT8-Dynamic</td><td>88.93</td><td>86.20</td><td>86.20</td><td>23.78</td></tr>
<tr><td rowspan="5">QwQ-32B</td><td>BF16</td><td>85.74</td><td>82.03</td><td>73.31</td><td>42.68</td></tr>
<tr><td>FP8-Static</td><td>85.44</td><td>81.91</td><td>75.36</td><td>42.68</td></tr>
<tr><td>FP8-Dynamic</td><td>85.07</td><td>81.93</td><td>75.66</td><td>42.07</td></tr>
<tr><td>INT4-GPTQ</td><td>84.03</td><td>81.26</td><td>68.23</td><td>45.73</td></tr>
<tr><td>INT4-AWQ</td><td>83.58</td><td>81.01</td><td>68.69</td><td>43.29</td></tr>
</tbody>
</table>
#### Qwen2.5VL Series Models
Benchmark results for Qwen2.5VL series models with `BF16`、`FP8-Static`、`FP8-Dynamic`、`INT4-GPTQ`、`INT4-AWQ` quantization algorithms on datasets including `MMMU_VAL`、`DocVQA_VAL` and `ChartQA_TEST`:
<table>
<thead>
<tr><th>Model</th><th>Quantization</th><th>MMMU_VAL</th><th>MMLDocVQA_VALU</th><th>ChartQA_TEST</th></tr>
</thead>
<tbody>
<tr><td rowspan="5">Qwen2.5VL-3B</td><td>BF16</td><td>47.11</td><td>78.57</td><td>80.32</td></tr>
<tr><td>FP8-Static</td><td>47.33</td><td>79.34</td><td>79.68</td></tr>
<tr><td>FP8-Dynamic</td><td>45.99</td><td>46.93</td><td>38.29</td></tr>
<tr><td>INT4-GPTQ</td><td>46.56</td><td>77.20</td><td>78.96</td></tr>
<tr><td>INT4-AWQ</td><td>45.78</td><td>-</td><td>79.60</td></tr>
<tr><td rowspan="5">Qwen2.5VL-7B</td><td>BF16</td><td>45.44</td><td>89.71</td><td>84.64</td></tr>
<tr><td>FP8-Static</td><td>47.00</td><td>89.83</td><td>85.92</td></tr>
<tr><td>FP8-Dynamic</td><td>47.22</td><td>89.80</td><td>88.64</td></tr>
<tr><td>INT4-GPTQ</td><td>46.67</td><td>90.45</td><td>-</td></tr>
<tr><td>INT4-AWQ</td><td>45.67</td><td>89.28</td><td>-</td></tr>
<tr><td rowspan="5">Qwen2.5VL-32B</td><td>BF16</td><td>57.00</td><td>90.03</td><td>-</td></tr>
<tr><td>FP8-Static</td><td>57.00</td><td>89.88</td><td>-</td></tr>
<tr><td>FP8-Dynamic</td><td>56.44</td><td>89.88</td><td>-</td></tr>
<tr><td>INT4-GPTQ</td><td>55.22</td><td>89.80 </td><td>-</td></tr>
<tr><td>INT4-AWQ</td><td>55.22</td><td>90.30</td><td>-</td></tr>
<tr><td rowspan="5">Qwen2.5VL-72B</td><td>BF16</td><td>58.78</td><td>94.39</td><td>85.60</td></tr>
<tr><td>FP8-Static</td><td>57.89</td><td>94.41</td><td>85.84</td></tr>
<tr><td>FP8-Dynamic</td><td>58.67</td><td>94.38</td><td>85.60</td></tr>
<tr><td>INT4-GPTQ</td><td>57.56</td><td>94.46</td><td>86.48</td></tr>
<tr><td>INT4-AWQ</td><td>58.78</td><td>94.19</td><td>87.28</td></tr>
</tbody>
</table>
#### Other Models
Benchmark results for other models with `FP8-Static`, `FP8-Dynamic`, `INT4-GPTQ`, and `INT4-AWQ` quantization algorithms on datasets including `CEVAL`, `MMLU` and `GSM8K`:
<table>
<thead>
<tr><th>Model</th><th>Quantization</th><th>CEVAL</th><th>MMLU</th><th>GSM8K</th></tr>
</thead>
<tbody>
<tr><td rowspan="3">Qwen2.5-1.5B-Instruct</td><td>BF16</td><td>67.01</td><td>60.05</td><td>54.28</td></tr>
<tr><td>FP8-Static</td><td>66.27</td><td>60.23</td><td>-</td></tr>
<tr><td>FP8-Dynamic</td><td>66.79</td><td>60.08</td><td>51.71</td></tr>
<tr><td rowspan="5">Qwen2.5-7B-Instruct</td><td>BF16</td><td>81.20</td><td>74.55</td><td>79.98</td></tr>
<tr><td>FP8-Static</td><td>81.13</td><td>74.03</td><td>79.30</td></tr>
<tr><td>FP8-Dynamic</td><td>80.31</td><td>74.07</td><td>79.00</td></tr>
<tr><td>INT4-GPTQ</td><td>79.05</td><td>73.05</td><td>74.75</td></tr>
<tr><td>INT4-AWQ</td><td>79.35</td><td>73.22</td><td>79.38</td></tr>
<tr><td rowspan="5">Qwen2.5-32B-Instruct</td><td>BF16</td><td>87.30</td><td>83.21</td><td>81.73</td></tr>
<tr><td>FP8-Static</td><td>87.59</td><td>83.08</td><td>81.58</td></tr>
<tr><td>FP8-Dynamic</td><td>87.30</td><td>83.04</td><td>81.58</td></tr>
<tr><td>INT4-GPTQ</td><td>86.70</td><td>82.45</td><td>82.03</td></tr>
<tr><td>INT4-AWQ</td><td>87.00</td><td>82.64</td><td>-</td></tr>
<tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-7B</td><td>BF16</td><td>53.49</td><td>53.80</td><td>75.74</td></tr>
<tr><td>FP8-Static</td><td>53.57</td><td>54.17</td><td>76.19</td></tr>
<tr><td>FP8-Dynamic</td><td>52.97</td><td>54.13</td><td>74.15</td></tr>
<tr><td>INT4-GPTQ</td><td>51.86</td><td>52.44</td><td>75.89</td></tr>
<tr><td>INT4-AWQ</td><td>53.49</td><td>53.70</td><td>-</td></tr>
<tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-14B</td><td>BF16</td><td>77.71</td><td>74.28</td><td>85.67</td></tr>
<tr><td>FP8-Static</td><td>77.56</td><td>74.66</td><td>86.73</td></tr>
<tr><td>FP8-Dynamic</td><td>76.82</td><td>74.63</td><td>87.11</td></tr>
<tr><td>INT4-GPTQ</td><td>74.29</td><td>72.37</td><td>84.61</td></tr>
<tr><td>INT4-AWQ</td><td>74.81</td><td>73.00</td><td>86.05</td></tr>
<tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-32B</td><td>BF16</td><td>84.18</td><td>80.89</td><td>87.41</td></tr>
<tr><td>FP8-Static</td><td>83.43</td><td>80.90</td><td>87.57</td></tr>
<tr><td>FP8-Dynamic</td><td>83.73</td><td>81.10</td><td>86.43</td></tr>
<tr><td>INT4-GPTQ</td><td>84.10</td><td>79.80</td><td>86.73</td></tr>
<tr><td>INT4-AWQ</td><td>82.84</td><td>80.15</td><td>87.19</td></tr>
</tbody>
</table>
### (2) Speculative Decoding
#### Qwen3 Series Models
Benchmark results for Qwen3 series models with `Eagle3` speculative decoding algorithm on datasets including `MT-bench`, `HunmanEval`, `GSM8K`, and `Alpaca`:
<table>
<thead>
<tr>
<th> </th><th> </th>
<th colspan="2" style="text-align: center; vertical-align: middle;">MT-bench</th>
<th colspan="2" style="text-align: center; vertical-align: middle;">HumanEval</th>
<th colspan="2" style="text-align: center; vertical-align: middle;">GSM8K</th>
<th colspan="2" style="text-align: center; vertical-align: middle;">Alpaca</th>
<th colspan="2" style="text-align: center; vertical-align: middle;">Mean</th></tr>
<tr><th>Temperature</th><th>Model</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th></tr>
</thead>
<tbody>
<!-- <tr><td colspan="12" style="text-align: center; vertical-align: middle;"><strong>Temperature=0</strong></td></tr> -->
<tr><td rowspan="6"><strong>T=0</strong></td>
<td>Qwen3-1.7B</td><td>2.05x</td><td>2.81</td><td>2.07x</td><td>2.93</td><td>2.11x</td><td>2.98</td><td>1.93x</td><td>2.69</td><td>2.04x</td><td>2.85</td></tr>
<tr> <td>Qwen3-4B</td><td>2.21x</td><td>3.01</td><td>2.36x</td><td>3.24</td><td>2.42x</td><td>3.13</td><td>2.32x</td><td>2.75</td><td>2.33x</td><td>3.03</td></tr>
<tr><td>Qwen3-8B</td><td>2.63x</td><td>3.65</td><td>2.76x</td><td>3.85</td><td>2.82x</td><td>3.90</td><td>2.62x</td><td>3.48</td><td>2.70x</td><td>3.72</td></tr>
<tr><td>Qwen3-14B</td><td>2.23x</td><td>3.30</td><td>2.53x</td><td>3.74</td><td>2.56x</td><td>3.79</td><td>2.16x</td><td>3.13</td><td>2.37x</td><td>3.49</td></tr>
<tr><td>Qwen3-32B</td><td>2.39x</td><td>2.78</td><td>2.37x</td><td>2.81</td><td>2.47x</td><td>2.92</td><td>2.42x</td><td>2.53</td><td>2.41x</td><td>2.76</td></tr>
<tr><td>Qwen3-30B-A3B</td><td>2.84x</td><td>3.63</td><td>2.27x</td><td>3.09</td><td>2.64x</td><td>3.42</td><td>2.83x</td><td>3.56</td><td>2.64x</td><td>3.42</td></tr>
<!-- <tr><td colspan="12" style="text-align: center; vertical-align: middle;"><strong>Temperature=1</strong></td></tr> -->
<tr><td rowspan="6"><strong>T=1</strong></td>
<td>Qwen3-1.7B</td><td>1.74x</td><td>2.53</td><td>1.86x</td><td>2.70</td><td>1.82x</td><td>2.69</td><td>1.72x</td><td>2.46</td><td>1.93x</td><td>2.60</td></tr>
<tr><td>Qwen3-4B</td><td>1.93x</td><td>2.60</td><td>2.00x</td><td>2.84</td><td>2.11x</td><td>2.82</td><td>2.34x</td><td>2.50</td><td>1.75x</td><td>2.69</td></tr>
<tr><td>Qwen3-8B</td><td>1.98x</td><td>2.75</td><td>2.25x</td><td>3.11</td><td>2.31x</td><td>3.15</td><td>2.10x</td><td>2.76</td><td>2.90x</td><td>2.94</td></tr>
<tr><td>Qwen3-14B</td><td>1.71x</td><td>2.61</td><td>1.95x</td><td>2.87</td><td>2.04x</td><td>3.08</td><td>1.68x</td><td>2.55</td><td>2.90x</td><td>2.78</td></tr>
<tr><td>Qwen3-32B</td><td>1.62x</td><td>1.91</td><td>1.71x</td><td>2.05</td><td>1.78x</td><td>2.10</td><td>1.80x</td><td>1.95</td><td>1.62x</td><td>2.00</td></tr>
<tr><td>Qwen3-30B-A3B</td><td>1.91x</td><td>2.46</td><td>2.00x</td><td>2.64</td><td>1.90x</td><td>2.53</td><td>1.80x</td><td>2.32</td><td>1.90x</td><td>2.48</td></tr>
</tbody>
</table>
#### Hunyuan Series Models
Benchmark results for Hunyuan series models with `Eagle3` speculative decoding algorithm on datasets including `MT-bench`, `HunmanEval`, `GSM8K`, and `Alpaca`:
<table>
<thead>
<tr>
<th> </th><th> </th>
<th colspan="2" style="text-align: center; vertical-align: middle;">MT-bench</th>
<th colspan="2" style="text-align: center; vertical-align: middle;">HumanEval</th>
<th colspan="2" style="text-align: center; vertical-align: middle;">GSM8K</th>
<th colspan="2" style="text-align: center; vertical-align: middle;">Alpaca</th>
<th colspan="2" style="text-align: center; vertical-align: middle;">Mean</th></tr>
<tr><th>Temperature</th><th>Model</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th></tr>
</thead>
<tbody>
<!-- <tr><td colspan="12" style="text-align: center; vertical-align: middle;"><strong>Temperature=0</strong></td></tr> -->
<tr><td rowspan="3"><strong>T=0</strong></td>
<td>Hunyuan-1.8B-Instruct</td><td>1.97x</td><td>2.90</td><td>2.58x</td><td>3.73</td><td>2.61x</td><td>3.71</td><td>1.71x</td><td>2.43</td><td>2.22x</td><td>3.19</td></tr>
<tr> <td>Hunyuan-4B-Instruct</td><td>1.77x</td><td>2.60</td><td>2.64x</td><td>3.35</td><td>2.14x</td><td>3.17</td><td>1.72x</td><td>2.57</td><td>2.07x</td><td>2.92</td></tr>
<tr><td>Hunyuan-7B-Instruct</td><td>2.22x</td><td>3.58</td><td>3.59x</td><td>5.47</td><td>2.96x</td><td>4.68</td><td>1.64x</td><td>2.56</td><td>2.60x</td><td>4.07</td></tr>
<!-- <tr><td colspan="12" style="text-align: center; vertical-align: middle;"><strong>Temperature=1</strong></td></tr> -->
<tr><td rowspan="3"><strong>T=1</strong></td>
<td>Hunyuan-1.8B-Instruct</td><td>1.58x</td><td>2.36</td><td>2.35x</td><td>3.56</td><td>2.23x</td><td>3.38</td><td>1.26x</td><td>1.87</td><td>1.86x</td><td>2.79</td></tr>
<tr><td>Hunyuan-4B-Instruct</td><td>1.36x</td><td>2.05</td><td>1.97x</td><td>2.86</td><td>1.72x</td><td>2.68</td><td>1.14x</td><td>1.76</td><td>1.55x</td><td>2.34</td></tr>
<tr><td>Hunyuan-7B-Instruct</td><td>1.90x</td><td>3.11</td><td>3.12x</td><td>5.09</td><td>2.74x</td><td>4.34</td><td>1.47x</td><td>2.39</td><td>2.31x</td><td>3.73</td></tr>
</tbody>
</table>
## 📝 License
The code for this project is open-sourced under the [License for AngelSlim](LICENSE).
## 🔗 Citation
```
@software{AngelSlim2025,
title={{AngelSlim}},
author={Tencent AngelSlim Project Contributors},
year={2025},
month={6},
url={https://github.com/Tencent/AngelSlim},
}
```
## 💬 Technical Discussion
* AngelSlim is continuously iterating and new features will be released soon. If you have any questions or suggestions, please open an issue on [GitHub Issues](https://github.com/Tencent/AngelSlim/issues) or join our [WeChat technical discussion group](./docs/source/assets/angel_slim_wechat.png).
|