Upload split.py
Browse files
convert/sg/mixtral-8x7b-32kseqlen/split.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
weight_parallel_dim = {"llma.tok_embeddings.weight": 1, "llma.layers.0.attention.wq.weight": 0,
|
| 2 |
+
"llma.layers.0.attention.wq.bias": 0, "llma.layers.0.attention.wk.weight": 0,
|
| 3 |
+
"llma.layers.0.attention.wk.bias": 0, "llma.layers.0.attention.wv.weight": 0,
|
| 4 |
+
"llma.layers.0.attention.wv.bias": 0, "llma.layers.0.attention.wo.weight": 1,
|
| 5 |
+
"llma.layers.1.attention.wq.weight": 0, "llma.layers.1.attention.wq.bias": 0,
|
| 6 |
+
"llma.layers.1.attention.wk.weight": 0, "llma.layers.1.attention.wk.bias": 0,
|
| 7 |
+
"llma.layers.1.attention.wv.weight": 0, "llma.layers.1.attention.wv.bias": 0,
|
| 8 |
+
"llma.layers.1.attention.wo.weight": 1, "llma.layers.2.attention.wq.weight": 0,
|
| 9 |
+
"llma.layers.2.attention.wq.bias": 0, "llma.layers.2.attention.wk.weight": 0,
|
| 10 |
+
"llma.layers.2.attention.wk.bias": 0, "llma.layers.2.attention.wv.weight": 0,
|
| 11 |
+
"llma.layers.2.attention.wv.bias": 0, "llma.layers.2.attention.wo.weight": 1,
|
| 12 |
+
"llma.layers.3.attention.wq.weight": 0, "llma.layers.3.attention.wq.bias": 0,
|
| 13 |
+
"llma.layers.3.attention.wk.weight": 0, "llma.layers.3.attention.wk.bias": 0,
|
| 14 |
+
"llma.layers.3.attention.wv.weight": 0, "llma.layers.3.attention.wv.bias": 0,
|
| 15 |
+
"llma.layers.3.attention.wo.weight": 1, "llma.layers.4.attention.wq.weight": 0,
|
| 16 |
+
"llma.layers.4.attention.wq.bias": 0, "llma.layers.4.attention.wk.weight": 0,
|
| 17 |
+
"llma.layers.4.attention.wk.bias": 0, "llma.layers.4.attention.wv.weight": 0,
|
| 18 |
+
"llma.layers.4.attention.wv.bias": 0, "llma.layers.4.attention.wo.weight": 1,
|
| 19 |
+
"llma.layers.5.attention.wq.weight": 0, "llma.layers.5.attention.wq.bias": 0,
|
| 20 |
+
"llma.layers.5.attention.wk.weight": 0, "llma.layers.5.attention.wk.bias": 0,
|
| 21 |
+
"llma.layers.5.attention.wv.weight": 0, "llma.layers.5.attention.wv.bias": 0,
|
| 22 |
+
"llma.layers.5.attention.wo.weight": 1, "llma.layers.6.attention.wq.weight": 0,
|
| 23 |
+
"llma.layers.6.attention.wq.bias": 0, "llma.layers.6.attention.wk.weight": 0,
|
| 24 |
+
"llma.layers.6.attention.wk.bias": 0, "llma.layers.6.attention.wv.weight": 0,
|
| 25 |
+
"llma.layers.6.attention.wv.bias": 0, "llma.layers.6.attention.wo.weight": 1,
|
| 26 |
+
"llma.layers.7.attention.wq.weight": 0, "llma.layers.7.attention.wq.bias": 0,
|
| 27 |
+
"llma.layers.7.attention.wk.weight": 0, "llma.layers.7.attention.wk.bias": 0,
|
| 28 |
+
"llma.layers.7.attention.wv.weight": 0, "llma.layers.7.attention.wv.bias": 0,
|
| 29 |
+
"llma.layers.7.attention.wo.weight": 1, "llma.layers.8.attention.wq.weight": 0,
|
| 30 |
+
"llma.layers.8.attention.wq.bias": 0, "llma.layers.8.attention.wk.weight": 0,
|
| 31 |
+
"llma.layers.8.attention.wk.bias": 0, "llma.layers.8.attention.wv.weight": 0,
|
| 32 |
+
"llma.layers.8.attention.wv.bias": 0, "llma.layers.8.attention.wo.weight": 1,
|
| 33 |
+
"llma.layers.9.attention.wq.weight": 0, "llma.layers.9.attention.wq.bias": 0,
|
| 34 |
+
"llma.layers.9.attention.wk.weight": 0, "llma.layers.9.attention.wk.bias": 0,
|
| 35 |
+
"llma.layers.9.attention.wv.weight": 0, "llma.layers.9.attention.wv.bias": 0,
|
| 36 |
+
"llma.layers.9.attention.wo.weight": 1, "llma.layers.10.attention.wq.weight": 0,
|
| 37 |
+
"llma.layers.10.attention.wq.bias": 0, "llma.layers.10.attention.wk.weight": 0,
|
| 38 |
+
"llma.layers.10.attention.wk.bias": 0, "llma.layers.10.attention.wv.weight": 0,
|
| 39 |
+
"llma.layers.10.attention.wv.bias": 0, "llma.layers.10.attention.wo.weight": 1,
|
| 40 |
+
"llma.layers.11.attention.wq.weight": 0, "llma.layers.11.attention.wq.bias": 0,
|
| 41 |
+
"llma.layers.11.attention.wk.weight": 0, "llma.layers.11.attention.wk.bias": 0,
|
| 42 |
+
"llma.layers.11.attention.wv.weight": 0, "llma.layers.11.attention.wv.bias": 0,
|
| 43 |
+
"llma.layers.11.attention.wo.weight": 1, "llma.layers.12.attention.wq.weight": 0,
|
| 44 |
+
"llma.layers.12.attention.wq.bias": 0, "llma.layers.12.attention.wk.weight": 0,
|
| 45 |
+
"llma.layers.12.attention.wk.bias": 0, "llma.layers.12.attention.wv.weight": 0,
|
| 46 |
+
"llma.layers.12.attention.wv.bias": 0, "llma.layers.12.attention.wo.weight": 1,
|
| 47 |
+
"llma.layers.13.attention.wq.weight": 0, "llma.layers.13.attention.wq.bias": 0,
|
| 48 |
+
"llma.layers.13.attention.wk.weight": 0, "llma.layers.13.attention.wk.bias": 0,
|
| 49 |
+
"llma.layers.13.attention.wv.weight": 0, "llma.layers.13.attention.wv.bias": 0,
|
| 50 |
+
"llma.layers.13.attention.wo.weight": 1, "llma.layers.14.attention.wq.weight": 0,
|
| 51 |
+
"llma.layers.14.attention.wq.bias": 0, "llma.layers.14.attention.wk.weight": 0,
|
| 52 |
+
"llma.layers.14.attention.wk.bias": 0, "llma.layers.14.attention.wv.weight": 0,
|
| 53 |
+
"llma.layers.14.attention.wv.bias": 0, "llma.layers.14.attention.wo.weight": 1,
|
| 54 |
+
"llma.layers.15.attention.wq.weight": 0, "llma.layers.15.attention.wq.bias": 0,
|
| 55 |
+
"llma.layers.15.attention.wk.weight": 0, "llma.layers.15.attention.wk.bias": 0,
|
| 56 |
+
"llma.layers.15.attention.wv.weight": 0, "llma.layers.15.attention.wv.bias": 0,
|
| 57 |
+
"llma.layers.15.attention.wo.weight": 1, "llma.layers.16.attention.wq.weight": 0,
|
| 58 |
+
"llma.layers.16.attention.wq.bias": 0, "llma.layers.16.attention.wk.weight": 0,
|
| 59 |
+
"llma.layers.16.attention.wk.bias": 0, "llma.layers.16.attention.wv.weight": 0,
|
| 60 |
+
"llma.layers.16.attention.wv.bias": 0, "llma.layers.16.attention.wo.weight": 1,
|
| 61 |
+
"llma.layers.17.attention.wq.weight": 0, "llma.layers.17.attention.wq.bias": 0,
|
| 62 |
+
"llma.layers.17.attention.wk.weight": 0, "llma.layers.17.attention.wk.bias": 0,
|
| 63 |
+
"llma.layers.17.attention.wv.weight": 0, "llma.layers.17.attention.wv.bias": 0,
|
| 64 |
+
"llma.layers.17.attention.wo.weight": 1, "llma.layers.18.attention.wq.weight": 0,
|
| 65 |
+
"llma.layers.18.attention.wq.bias": 0, "llma.layers.18.attention.wk.weight": 0,
|
| 66 |
+
"llma.layers.18.attention.wk.bias": 0, "llma.layers.18.attention.wv.weight": 0,
|
| 67 |
+
"llma.layers.18.attention.wv.bias": 0, "llma.layers.18.attention.wo.weight": 1,
|
| 68 |
+
"llma.layers.19.attention.wq.weight": 0, "llma.layers.19.attention.wq.bias": 0,
|
| 69 |
+
"llma.layers.19.attention.wk.weight": 0, "llma.layers.19.attention.wk.bias": 0,
|
| 70 |
+
"llma.layers.19.attention.wv.weight": 0, "llma.layers.19.attention.wv.bias": 0,
|
| 71 |
+
"llma.layers.19.attention.wo.weight": 1, "llma.layers.20.attention.wq.weight": 0,
|
| 72 |
+
"llma.layers.20.attention.wq.bias": 0, "llma.layers.20.attention.wk.weight": 0,
|
| 73 |
+
"llma.layers.20.attention.wk.bias": 0, "llma.layers.20.attention.wv.weight": 0,
|
| 74 |
+
"llma.layers.20.attention.wv.bias": 0, "llma.layers.20.attention.wo.weight": 1,
|
| 75 |
+
"llma.layers.21.attention.wq.weight": 0, "llma.layers.21.attention.wq.bias": 0,
|
| 76 |
+
"llma.layers.21.attention.wk.weight": 0, "llma.layers.21.attention.wk.bias": 0,
|
| 77 |
+
"llma.layers.21.attention.wv.weight": 0, "llma.layers.21.attention.wv.bias": 0,
|
| 78 |
+
"llma.layers.21.attention.wo.weight": 1, "llma.layers.22.attention.wq.weight": 0,
|
| 79 |
+
"llma.layers.22.attention.wq.bias": 0, "llma.layers.22.attention.wk.weight": 0,
|
| 80 |
+
"llma.layers.22.attention.wk.bias": 0, "llma.layers.22.attention.wv.weight": 0,
|
| 81 |
+
"llma.layers.22.attention.wv.bias": 0, "llma.layers.22.attention.wo.weight": 1,
|
| 82 |
+
"llma.layers.23.attention.wq.weight": 0, "llma.layers.23.attention.wq.bias": 0,
|
| 83 |
+
"llma.layers.23.attention.wk.weight": 0, "llma.layers.23.attention.wk.bias": 0,
|
| 84 |
+
"llma.layers.23.attention.wv.weight": 0, "llma.layers.23.attention.wv.bias": 0,
|
| 85 |
+
"llma.layers.23.attention.wo.weight": 1, "llma.layers.24.attention.wq.weight": 0,
|
| 86 |
+
"llma.layers.24.attention.wq.bias": 0, "llma.layers.24.attention.wk.weight": 0,
|
| 87 |
+
"llma.layers.24.attention.wk.bias": 0, "llma.layers.24.attention.wv.weight": 0,
|
| 88 |
+
"llma.layers.24.attention.wv.bias": 0, "llma.layers.24.attention.wo.weight": 1,
|
| 89 |
+
"llma.layers.25.attention.wq.weight": 0, "llma.layers.25.attention.wq.bias": 0,
|
| 90 |
+
"llma.layers.25.attention.wk.weight": 0, "llma.layers.25.attention.wk.bias": 0,
|
| 91 |
+
"llma.layers.25.attention.wv.weight": 0, "llma.layers.25.attention.wv.bias": 0,
|
| 92 |
+
"llma.layers.25.attention.wo.weight": 1, "llma.layers.26.attention.wq.weight": 0,
|
| 93 |
+
"llma.layers.26.attention.wq.bias": 0, "llma.layers.26.attention.wk.weight": 0,
|
| 94 |
+
"llma.layers.26.attention.wk.bias": 0, "llma.layers.26.attention.wv.weight": 0,
|
| 95 |
+
"llma.layers.26.attention.wv.bias": 0, "llma.layers.26.attention.wo.weight": 1,
|
| 96 |
+
"llma.layers.27.attention.wq.weight": 0, "llma.layers.27.attention.wq.bias": 0,
|
| 97 |
+
"llma.layers.27.attention.wk.weight": 0, "llma.layers.27.attention.wk.bias": 0,
|
| 98 |
+
"llma.layers.27.attention.wv.weight": 0, "llma.layers.27.attention.wv.bias": 0,
|
| 99 |
+
"llma.layers.27.attention.wo.weight": 1, "llma.layers.28.attention.wq.weight": 0,
|
| 100 |
+
"llma.layers.28.attention.wq.bias": 0, "llma.layers.28.attention.wk.weight": 0,
|
| 101 |
+
"llma.layers.28.attention.wk.bias": 0, "llma.layers.28.attention.wv.weight": 0,
|
| 102 |
+
"llma.layers.28.attention.wv.bias": 0, "llma.layers.28.attention.wo.weight": 1,
|
| 103 |
+
"llma.layers.29.attention.wq.weight": 0, "llma.layers.29.attention.wq.bias": 0,
|
| 104 |
+
"llma.layers.29.attention.wk.weight": 0, "llma.layers.29.attention.wk.bias": 0,
|
| 105 |
+
"llma.layers.29.attention.wv.weight": 0, "llma.layers.29.attention.wv.bias": 0,
|
| 106 |
+
"llma.layers.29.attention.wo.weight": 1, "llma.layers.30.attention.wq.weight": 0,
|
| 107 |
+
"llma.layers.30.attention.wq.bias": 0, "llma.layers.30.attention.wk.weight": 0,
|
| 108 |
+
"llma.layers.30.attention.wk.bias": 0, "llma.layers.30.attention.wv.weight": 0,
|
| 109 |
+
"llma.layers.30.attention.wv.bias": 0, "llma.layers.30.attention.wo.weight": 1,
|
| 110 |
+
"llma.layers.31.attention.wq.weight": 0, "llma.layers.31.attention.wq.bias": 0,
|
| 111 |
+
"llma.layers.31.attention.wk.weight": 0, "llma.layers.31.attention.wk.bias": 0,
|
| 112 |
+
"llma.layers.31.attention.wv.weight": 0, "llma.layers.31.attention.wv.bias": 0,
|
| 113 |
+
"llma.layers.31.attention.wo.weight": 1, "llma.output.weight": 0, "llma.output.bias": 0}
|
| 114 |
+
|
| 115 |
+
import torch
|
| 116 |
+
from pathlib import Path
|
| 117 |
+
|
| 118 |
+
Path("./converted").mkdir(exist_ok=True)
|
| 119 |
+
|
| 120 |
+
ori = torch.load("consolidated.00.pth", map_location="cpu")
|
| 121 |
+
ori = {"llma." + key: val for key, val in ori.items()}
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def func(rank=0):
|
| 125 |
+
shard_split_to = 8
|
| 126 |
+
split_ckpt = {}
|
| 127 |
+
for key, ori_param in ori.items():
|
| 128 |
+
if key in weight_parallel_dim:
|
| 129 |
+
split_ckpt[key] = torch.chunk(ori_param, shard_split_to, weight_parallel_dim[key])[
|
| 130 |
+
rank % shard_split_to].clone()
|
| 131 |
+
if rank == 0:
|
| 132 |
+
print(f"chunk {key}")
|
| 133 |
+
else:
|
| 134 |
+
if "experts." in key and int(key.split("experts.")[1].split(".")[0]) != rank:
|
| 135 |
+
continue
|
| 136 |
+
else:
|
| 137 |
+
split_ckpt[key] = ori_param
|
| 138 |
+
if rank == 0:
|
| 139 |
+
print(f"inherit {key}")
|
| 140 |
+
torch.save({"model": split_ckpt}, f"converted/consolidated.{rank:02d}-of-08.model.pth")
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
for r in range(8):
|
| 144 |
+
func(r)
|