Upload text_classification.py
Browse files- text_classification.py +465 -0
text_classification.py
ADDED
|
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""text_classification.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1D25W7EYF5v1a0FoSHKAcyVhwMMIU6yg4
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!pip install transformers datasets
|
| 11 |
+
!pip install torch
|
| 12 |
+
|
| 13 |
+
# Ultra-Simple Arabic Product Classifier with Enhanced Training
|
| 14 |
+
import pandas as pd
|
| 15 |
+
import torch
|
| 16 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 17 |
+
from sklearn.preprocessing import LabelEncoder
|
| 18 |
+
from sklearn.model_selection import train_test_split
|
| 19 |
+
from sklearn.metrics import accuracy_score, classification_report
|
| 20 |
+
import joblib
|
| 21 |
+
import numpy as np
|
| 22 |
+
from collections import Counter
|
| 23 |
+
|
| 24 |
+
# Load and preprocess your data
|
| 25 |
+
print("Loading and preprocessing data...")
|
| 26 |
+
df = pd.read_excel('/content/Copy ofمنتجات مقاهي (1).xlsx', sheet_name='products')
|
| 27 |
+
df = df[['اسم المنتج', 'التصنيف المحاسبي']].dropna()
|
| 28 |
+
|
| 29 |
+
# Prepare text and labels
|
| 30 |
+
label_encoder = LabelEncoder()
|
| 31 |
+
labels = label_encoder.fit_transform(df['التصنيف المحاسبي'])
|
| 32 |
+
texts = df['اسم المنتج'].tolist()
|
| 33 |
+
|
| 34 |
+
print(f"Loaded {len(texts)} products with {len(set(labels))} unique categories.")
|
| 35 |
+
print(f"Categories: {list(label_encoder.classes_)}")
|
| 36 |
+
|
| 37 |
+
# Check class distribution and handle single-sample classes
|
| 38 |
+
from collections import Counter
|
| 39 |
+
label_counts = Counter(labels)
|
| 40 |
+
print(f"Class distribution:")
|
| 41 |
+
for label_id, count in sorted(label_counts.items()):
|
| 42 |
+
label_name = label_encoder.inverse_transform([label_id])[0]
|
| 43 |
+
print(f" {label_name}: {count} samples")
|
| 44 |
+
|
| 45 |
+
# Separate single-sample classes from multi-sample classes
|
| 46 |
+
single_sample_mask = np.array([label_counts[label] == 1 for label in labels])
|
| 47 |
+
multi_sample_mask = ~single_sample_mask
|
| 48 |
+
|
| 49 |
+
# Get indices for single and multi sample data
|
| 50 |
+
single_indices = np.where(single_sample_mask)[0]
|
| 51 |
+
multi_indices = np.where(multi_sample_mask)[0]
|
| 52 |
+
|
| 53 |
+
print(f"\nSingle-sample classes: {np.sum(single_sample_mask)} samples")
|
| 54 |
+
print(f"Multi-sample classes: {np.sum(multi_sample_mask)} samples")
|
| 55 |
+
|
| 56 |
+
if np.sum(multi_sample_mask) > 0:
|
| 57 |
+
# Split multi-sample data with stratification
|
| 58 |
+
multi_texts = [texts[i] for i in multi_indices]
|
| 59 |
+
multi_labels = [labels[i] for i in multi_indices]
|
| 60 |
+
|
| 61 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(
|
| 62 |
+
multi_texts, multi_labels, test_size=0.2, random_state=42, stratify=multi_labels
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Add single-sample data to training set (can't split them)
|
| 66 |
+
if np.sum(single_sample_mask) > 0:
|
| 67 |
+
single_texts = [texts[i] for i in single_indices]
|
| 68 |
+
single_labels = [labels[i] for i in single_indices]
|
| 69 |
+
|
| 70 |
+
train_texts.extend(single_texts)
|
| 71 |
+
train_labels.extend(single_labels)
|
| 72 |
+
|
| 73 |
+
print(f"Added {len(single_texts)} single-sample items to training set")
|
| 74 |
+
else:
|
| 75 |
+
# If all classes have single samples, use simple split without stratification
|
| 76 |
+
print("Warning: All or most classes have single samples. Using simple split.")
|
| 77 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(
|
| 78 |
+
texts, labels, test_size=0.2, random_state=42
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
print(f"Training set: {len(train_texts)} samples")
|
| 82 |
+
print(f"Validation set: {len(val_texts)} samples")
|
| 83 |
+
|
| 84 |
+
# Load Arabic BERT
|
| 85 |
+
model_name = "asafaya/bert-base-arabic"
|
| 86 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 87 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(set(labels)))
|
| 88 |
+
|
| 89 |
+
# Define Enhanced Dataset class
|
| 90 |
+
class SimpleDataset(torch.utils.data.Dataset):
|
| 91 |
+
def __init__(self, texts, labels, tokenizer):
|
| 92 |
+
self.texts = texts
|
| 93 |
+
self.labels = labels
|
| 94 |
+
self.tokenizer = tokenizer
|
| 95 |
+
|
| 96 |
+
def __len__(self):
|
| 97 |
+
return len(self.texts)
|
| 98 |
+
|
| 99 |
+
def __getitem__(self, idx):
|
| 100 |
+
encoding = self.tokenizer(
|
| 101 |
+
str(self.texts[idx]),
|
| 102 |
+
truncation=True,
|
| 103 |
+
padding='max_length',
|
| 104 |
+
max_length=128,
|
| 105 |
+
return_tensors='pt'
|
| 106 |
+
)
|
| 107 |
+
return {
|
| 108 |
+
'input_ids': encoding['input_ids'].squeeze(0),
|
| 109 |
+
'attention_mask': encoding['attention_mask'].squeeze(0),
|
| 110 |
+
'labels': torch.tensor(self.labels[idx], dtype=torch.long)
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
# Create datasets
|
| 114 |
+
train_dataset = SimpleDataset(train_texts, train_labels, tokenizer)
|
| 115 |
+
val_dataset = SimpleDataset(val_texts, val_labels, tokenizer)
|
| 116 |
+
|
| 117 |
+
# Define compute metrics function for evaluation
|
| 118 |
+
def compute_metrics(eval_pred):
|
| 119 |
+
predictions, labels = eval_pred
|
| 120 |
+
predictions = np.argmax(predictions, axis=1)
|
| 121 |
+
accuracy = accuracy_score(labels, predictions)
|
| 122 |
+
return {'accuracy': accuracy}
|
| 123 |
+
|
| 124 |
+
# Enhanced Training setup with evaluation
|
| 125 |
+
training_args = TrainingArguments(
|
| 126 |
+
output_dir='./model',
|
| 127 |
+
num_train_epochs=50,
|
| 128 |
+
per_device_train_batch_size=16, # زودت الـ batch size من 8 لـ 16
|
| 129 |
+
per_device_eval_batch_size=16, # batch size للتقييم
|
| 130 |
+
eval_strategy="epoch", # تقييم بعد كل epoch
|
| 131 |
+
save_strategy="epoch", # حفظ بعد كل epoch
|
| 132 |
+
logging_steps=10, # تسجيل أكثر تكراراً
|
| 133 |
+
save_total_limit=2, # الاحتفاظ بأفضل 2 نماذج فقط
|
| 134 |
+
load_best_model_at_end=True, # تحميل أفضل نموذج في النهاية
|
| 135 |
+
metric_for_best_model="eval_accuracy", # المقياس لاختيار أفضل نموذج
|
| 136 |
+
greater_is_better=True, # كلما زادت الدقة كان أفضل
|
| 137 |
+
report_to=None,
|
| 138 |
+
warmup_steps=100, # خطوات إحماء للتدريب
|
| 139 |
+
weight_decay=0.01, # تنظيم لمنع الـ overfitting
|
| 140 |
+
learning_rate=2e-5, # معدل تعلم محسن
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# Enhanced Trainer instance with evaluation
|
| 144 |
+
trainer = Trainer(
|
| 145 |
+
model=model,
|
| 146 |
+
args=training_args,
|
| 147 |
+
train_dataset=train_dataset,
|
| 148 |
+
eval_dataset=val_dataset, # إضافة بيانات التقييم
|
| 149 |
+
tokenizer=tokenizer,
|
| 150 |
+
compute_metrics=compute_metrics # إضافة وظيفة حساب المقاييس
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Start training with evaluation
|
| 154 |
+
print("Training started with evaluation...")
|
| 155 |
+
trainer.train()
|
| 156 |
+
|
| 157 |
+
# Save model, tokenizer, and label encoder
|
| 158 |
+
trainer.save_model('./model')
|
| 159 |
+
tokenizer.save_pretrained('./model')
|
| 160 |
+
joblib.dump(label_encoder, './model/labels.pkl')
|
| 161 |
+
|
| 162 |
+
print("Training complete! Model saved to './model'")
|
| 163 |
+
|
| 164 |
+
# Enhanced prediction function with batch processing capability
|
| 165 |
+
def predict(text):
|
| 166 |
+
"""Predict single product classification"""
|
| 167 |
+
tokenizer = AutoTokenizer.from_pretrained('./model')
|
| 168 |
+
model = AutoModelForSequenceClassification.from_pretrained('./model')
|
| 169 |
+
label_encoder = joblib.load('./model/labels.pkl')
|
| 170 |
+
|
| 171 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
| 172 |
+
with torch.no_grad():
|
| 173 |
+
outputs = model(**inputs)
|
| 174 |
+
|
| 175 |
+
predicted_id = outputs.logits.argmax().item()
|
| 176 |
+
confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
|
| 177 |
+
classification = label_encoder.inverse_transform([predicted_id])[0]
|
| 178 |
+
|
| 179 |
+
return classification, confidence
|
| 180 |
+
|
| 181 |
+
def predict_batch(texts):
|
| 182 |
+
"""Predict multiple products at once for faster processing"""
|
| 183 |
+
tokenizer = AutoTokenizer.from_pretrained('./model')
|
| 184 |
+
model = AutoModelForSequenceClassification.from_pretrained('./model')
|
| 185 |
+
label_encoder = joblib.load('./model/labels.pkl')
|
| 186 |
+
|
| 187 |
+
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
| 188 |
+
with torch.no_grad():
|
| 189 |
+
outputs = model(**inputs)
|
| 190 |
+
|
| 191 |
+
predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
|
| 192 |
+
confidences = torch.nn.functional.softmax(outputs.logits, dim=-1).max(dim=-1)[0].cpu().numpy()
|
| 193 |
+
classifications = label_encoder.inverse_transform(predictions)
|
| 194 |
+
|
| 195 |
+
return list(zip(classifications, confidences))
|
| 196 |
+
|
| 197 |
+
# Evaluate on validation set
|
| 198 |
+
print("\nEvaluating on validation set...")
|
| 199 |
+
val_predictions = []
|
| 200 |
+
val_confidences = []
|
| 201 |
+
|
| 202 |
+
for text in val_texts:
|
| 203 |
+
pred, conf = predict(text)
|
| 204 |
+
val_predictions.append(pred)
|
| 205 |
+
val_confidences.append(conf)
|
| 206 |
+
|
| 207 |
+
# Convert back to numeric for comparison
|
| 208 |
+
val_pred_numeric = label_encoder.transform(val_predictions)
|
| 209 |
+
accuracy = accuracy_score(val_labels, val_pred_numeric)
|
| 210 |
+
print(f"Validation Accuracy: {accuracy:.4f}")
|
| 211 |
+
|
| 212 |
+
# Detailed classification report
|
| 213 |
+
val_true_labels = label_encoder.inverse_transform(val_labels)
|
| 214 |
+
print("\nDetailed Classification Report:")
|
| 215 |
+
print(classification_report(val_true_labels, val_predictions, target_names=label_encoder.classes_))
|
| 216 |
+
|
| 217 |
+
# Test examples
|
| 218 |
+
test_products = [
|
| 219 |
+
"نادك حليب طويل الأجل 1 لتر",
|
| 220 |
+
"قهوة عربية محمصة",
|
| 221 |
+
"شاي أحمر ليبتون",
|
| 222 |
+
"عصير برتقال طبيعي"
|
| 223 |
+
]
|
| 224 |
+
|
| 225 |
+
print("\n" + "="*50)
|
| 226 |
+
print("Testing on sample products:")
|
| 227 |
+
print("="*50)
|
| 228 |
+
|
| 229 |
+
for product in test_products:
|
| 230 |
+
result, confidence = predict(product)
|
| 231 |
+
print(f"Product: {product}")
|
| 232 |
+
print(f"Classification: {result}")
|
| 233 |
+
print(f"Confidence: {confidence:.3f}")
|
| 234 |
+
print("-" * 30)
|
| 235 |
+
|
| 236 |
+
# Batch prediction example
|
| 237 |
+
print("\nBatch prediction example:")
|
| 238 |
+
batch_results = predict_batch(test_products)
|
| 239 |
+
for product, (classification, confidence) in zip(test_products, batch_results):
|
| 240 |
+
print(f"{product} -> {classification} ({confidence:.3f})")
|
| 241 |
+
|
| 242 |
+
print(f"\nModel training complete!")
|
| 243 |
+
print(f"- Single prediction: predict('product name')")
|
| 244 |
+
print(f"- Batch prediction: predict_batch(['product1', 'product2', ...])")
|
| 245 |
+
print(f"- Validation accuracy: {accuracy:.4f}")
|
| 246 |
+
print(f"- Model saved to: './model'")
|
| 247 |
+
|
| 248 |
+
# Using the trained model (without retraining)
|
| 249 |
+
import torch
|
| 250 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 251 |
+
import joblib
|
| 252 |
+
|
| 253 |
+
print("Loading trained model...")
|
| 254 |
+
|
| 255 |
+
# Load model and tools (only once)
|
| 256 |
+
try:
|
| 257 |
+
tokenizer = AutoTokenizer.from_pretrained('./model')
|
| 258 |
+
model = AutoModelForSequenceClassification.from_pretrained('./model')
|
| 259 |
+
label_encoder = joblib.load('./model/labels.pkl')
|
| 260 |
+
print("Model loaded successfully!")
|
| 261 |
+
print(f"Number of available categories: {len(label_encoder.classes_)}")
|
| 262 |
+
|
| 263 |
+
# Display available categories
|
| 264 |
+
print("\nAvailable categories:")
|
| 265 |
+
for i, category in enumerate(label_encoder.classes_, 1):
|
| 266 |
+
print(f"{i:2d}. {category}")
|
| 267 |
+
|
| 268 |
+
except Exception as e:
|
| 269 |
+
print(f"Error loading model: {e}")
|
| 270 |
+
print("Make sure './model' folder exists and contains required files")
|
| 271 |
+
exit()
|
| 272 |
+
|
| 273 |
+
# Basic classification function
|
| 274 |
+
def classify_product(product_name):
|
| 275 |
+
"""Classify a single product"""
|
| 276 |
+
try:
|
| 277 |
+
# Prepare text
|
| 278 |
+
inputs = tokenizer(
|
| 279 |
+
product_name,
|
| 280 |
+
return_tensors="pt",
|
| 281 |
+
truncation=True,
|
| 282 |
+
padding=True,
|
| 283 |
+
max_length=128
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
# Prediction
|
| 287 |
+
with torch.no_grad():
|
| 288 |
+
outputs = model(**inputs)
|
| 289 |
+
|
| 290 |
+
# Extract result
|
| 291 |
+
predicted_id = outputs.logits.argmax().item()
|
| 292 |
+
confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
|
| 293 |
+
classification = label_encoder.inverse_transform([predicted_id])[0]
|
| 294 |
+
|
| 295 |
+
return {
|
| 296 |
+
'product': product_name,
|
| 297 |
+
'classification': classification,
|
| 298 |
+
'confidence': confidence,
|
| 299 |
+
'success': True
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
except Exception as e:
|
| 303 |
+
return {
|
| 304 |
+
'product': product_name,
|
| 305 |
+
'classification': None,
|
| 306 |
+
'confidence': 0,
|
| 307 |
+
'success': False,
|
| 308 |
+
'error': str(e)
|
| 309 |
+
}
|
| 310 |
+
|
| 311 |
+
# Function to classify multiple products
|
| 312 |
+
def classify_multiple_products(product_list):
|
| 313 |
+
"""Classify a list of products"""
|
| 314 |
+
results = []
|
| 315 |
+
|
| 316 |
+
print(f"Classifying {len(product_list)} products...")
|
| 317 |
+
|
| 318 |
+
for i, product in enumerate(product_list, 1):
|
| 319 |
+
result = classify_product(product)
|
| 320 |
+
results.append(result)
|
| 321 |
+
|
| 322 |
+
if result['success']:
|
| 323 |
+
print(f"{i:3d}. {product}")
|
| 324 |
+
print(f" → {result['classification']}")
|
| 325 |
+
print(f" → Confidence: {result['confidence']:.3f}")
|
| 326 |
+
else:
|
| 327 |
+
print(f"{i:3d}. {product} - Error: {result['error']}")
|
| 328 |
+
print()
|
| 329 |
+
|
| 330 |
+
return results
|
| 331 |
+
|
| 332 |
+
# Test examples
|
| 333 |
+
test_products = [
|
| 334 |
+
"نادك حليب طويل الأجل 1 لتر",
|
| 335 |
+
"قهوة عربية محمصة",
|
| 336 |
+
"شاي أحمر ليبتون",
|
| 337 |
+
"منظف أرضيات فلاش",
|
| 338 |
+
"سكر أبيض ناعم",
|
| 339 |
+
"عصير برتقال طبيعي"
|
| 340 |
+
]
|
| 341 |
+
|
| 342 |
+
print("\n" + "="*60)
|
| 343 |
+
print("Testing model on sample products")
|
| 344 |
+
print("="*60)
|
| 345 |
+
|
| 346 |
+
# Classify test products
|
| 347 |
+
test_results = classify_multiple_products(test_products)
|
| 348 |
+
|
| 349 |
+
# Quick statistics
|
| 350 |
+
successful_predictions = [r for r in test_results if r['success']]
|
| 351 |
+
avg_confidence = sum(r['confidence'] for r in successful_predictions) / len(successful_predictions)
|
| 352 |
+
|
| 353 |
+
print("="*60)
|
| 354 |
+
print("Results summary:")
|
| 355 |
+
print(f"Successfully classified {len(successful_predictions)} products")
|
| 356 |
+
print(f"Average confidence level: {avg_confidence:.3f}")
|
| 357 |
+
|
| 358 |
+
# Display unique classifications
|
| 359 |
+
unique_classifications = set(r['classification'] for r in successful_predictions)
|
| 360 |
+
print(f"Number of categories used: {len(unique_classifications)}")
|
| 361 |
+
print("Categories:")
|
| 362 |
+
for classification in sorted(unique_classifications):
|
| 363 |
+
count = sum(1 for r in successful_predictions if r['classification'] == classification)
|
| 364 |
+
print(f" • {classification} ({count} products)")
|
| 365 |
+
|
| 366 |
+
print("\n" + "="*60)
|
| 367 |
+
print("Model ready for use!")
|
| 368 |
+
print("="*60)
|
| 369 |
+
print("Usage:")
|
| 370 |
+
print("result = classify_product('product name')")
|
| 371 |
+
print("print(f\"Classification: {result['classification']}\")")
|
| 372 |
+
print("print(f\"Confidence: {result['confidence']:.3f}\")")
|
| 373 |
+
|
| 374 |
+
print("\nFor multiple products:")
|
| 375 |
+
print("products = ['product 1', 'product 2', 'product 3']")
|
| 376 |
+
print("results = classify_multiple_products(products)")
|
| 377 |
+
|
| 378 |
+
test_product = 'عطر كروم ليجند للرجال او دي تواليت من ازارو 125 مل'
|
| 379 |
+
result, confidence = predict(test_product)
|
| 380 |
+
|
| 381 |
+
print(f"\nTest: {test_product}")
|
| 382 |
+
print(f"Result: {result}")
|
| 383 |
+
print(f"Confidence: {confidence:.3f}")
|
| 384 |
+
|
| 385 |
+
"""# Saving The model"""
|
| 386 |
+
|
| 387 |
+
# احفظ النموذج
|
| 388 |
+
model.save_pretrained('/content/my_model/')
|
| 389 |
+
|
| 390 |
+
# لاحقاً، لتحميله مرة أخرى:
|
| 391 |
+
from transformers import BertForSequenceClassification
|
| 392 |
+
model = BertForSequenceClassification.from_pretrained('/content/my_model/')
|
| 393 |
+
|
| 394 |
+
!zip -r my_model.zip /content/my_model/
|
| 395 |
+
|
| 396 |
+
tokenizer.save_pretrained('/content/my_model')
|
| 397 |
+
model.save_pretrained('/content/my_model')
|
| 398 |
+
import joblib
|
| 399 |
+
joblib.dump(label_encoder, '/content/my_model/labels.pkl')
|
| 400 |
+
|
| 401 |
+
from google.colab import files
|
| 402 |
+
files.download('my_model.zip')
|
| 403 |
+
|
| 404 |
+
"""# Testing"""
|
| 405 |
+
|
| 406 |
+
!ls /content/my_model
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 411 |
+
import torch
|
| 412 |
+
import joblib
|
| 413 |
+
|
| 414 |
+
# Define the path where files are saved
|
| 415 |
+
save_path = '/content/my_model'
|
| 416 |
+
|
| 417 |
+
# Load the tokenizer, model, and label encoder
|
| 418 |
+
tokenizer = AutoTokenizer.from_pretrained(save_path)
|
| 419 |
+
model = AutoModelForSequenceClassification.from_pretrained(save_path)
|
| 420 |
+
label_encoder = joblib.load(f'{save_path}/labels.pkl')
|
| 421 |
+
|
| 422 |
+
def predict(text):
|
| 423 |
+
# Preprocess the input text
|
| 424 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
| 425 |
+
|
| 426 |
+
# Perform inference
|
| 427 |
+
with torch.no_grad():
|
| 428 |
+
outputs = model(**inputs)
|
| 429 |
+
|
| 430 |
+
# Get predicted class ID and confidence
|
| 431 |
+
predicted_id = outputs.logits.argmax().item()
|
| 432 |
+
confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
|
| 433 |
+
|
| 434 |
+
# Map the ID back to the label name
|
| 435 |
+
classification = label_encoder.inverse_transform([predicted_id])[0]
|
| 436 |
+
|
| 437 |
+
return classification, confidence
|
| 438 |
+
|
| 439 |
+
# Test a product
|
| 440 |
+
test_product = "نادك حليب طويل الأجل 1 لتر"
|
| 441 |
+
result, confidence = predict(test_product)
|
| 442 |
+
|
| 443 |
+
print(f"Test Product: {test_product}")
|
| 444 |
+
print(f"Predicted Category: {result}")
|
| 445 |
+
print(f"Confidence: {confidence:.3f}")
|
| 446 |
+
|
| 447 |
+
# Test a product
|
| 448 |
+
test_product = "زبادى"
|
| 449 |
+
result, confidence = predict(test_product)
|
| 450 |
+
|
| 451 |
+
print(f"Test Product: {test_product}")
|
| 452 |
+
print(f"Predicted Category: {result}")
|
| 453 |
+
print(f"Confidence: {confidence:.3f}")
|
| 454 |
+
|
| 455 |
+
# Test a product
|
| 456 |
+
test_product = "بترول"
|
| 457 |
+
result, confidence = predict(test_product)
|
| 458 |
+
|
| 459 |
+
print(f"Test Product: {test_product}")
|
| 460 |
+
print(f"Predicted Category: {result}")
|
| 461 |
+
print(f"Confidence: {confidence:.3f}")
|
| 462 |
+
|
| 463 |
+
from google.colab import files
|
| 464 |
+
uploaded = files.upload()
|
| 465 |
+
|