File size: 2,825 Bytes
119b31f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
tags:
- generated_from_trainer
datasets:
- Alishan7786/testing
model-index:
- name: outputs/mymodel
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.8.0.dev0`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
bf16: auto
dataset_processes: 32
datasets:
 - Alishan7786/testing
gradient_accumulation_steps: 1
gradient_checkpointing: false
learning_rate: 0.0002
lisa_layers_attribute: model.layers
load_best_model_at_end: false
load_in_4bit: false
load_in_8bit: true
lora_alpha: 16
lora_dropout: 0.05
lora_r: 8
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
loraplus_lr_embedding: 1.0e-06
lr_scheduler: cosine
max_prompt_len: 512
mean_resizing_embeddings: false
micro_batch_size: 16
num_epochs: 1.0
optimizer: adamw_bnb_8bit
output_dir: ./outputs/mymodel
pretrain_multipack_attn: true
pretrain_multipack_buffer_size: 10000
qlora_sharded_model_loading: false
ray_num_workers: 1
resources_per_worker:
  GPU: 1
sample_packing_bin_size: 200
sample_packing_group_size: 100000
save_only_model: false
save_safetensors: true
sequence_len: 4096
shuffle_merged_datasets: true
skip_prepare_dataset: false
strict: false
train_on_inputs: false
trl:
  log_completions: false
  ref_model_mixup_alpha: 0.9
  ref_model_sync_steps: 64
  sync_ref_model: false
  use_vllm: false
  vllm_device: auto
  vllm_dtype: auto
  vllm_gpu_memory_utilization: 0.9
use_ray: false
val_set_size: 0.0
weight_decay: 0.0

```

</details><br>

# outputs/mymodel

This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the ./data.json dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1.0

### Training results



### Framework versions

- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0