Upload eval_mteb.py
Browse files- scripts/eval_mteb.py +668 -0
scripts/eval_mteb.py
ADDED
|
@@ -0,0 +1,668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
from collections import defaultdict
|
| 3 |
+
import json
|
| 4 |
+
import logging
|
| 5 |
+
import math
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import queue
|
| 9 |
+
from typing import Dict, List, Optional, Union
|
| 10 |
+
|
| 11 |
+
from tqdm.autonotebook import trange
|
| 12 |
+
import datasets
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torch
|
| 15 |
+
import torch.multiprocessing as mp
|
| 16 |
+
from transformers import AutoModel, AutoTokenizer
|
| 17 |
+
from transformers import AutoModelForCausalLM
|
| 18 |
+
from mteb import MTEB, CrosslingualTask, MultilingualTask
|
| 19 |
+
|
| 20 |
+
TASK_LIST_CLASSIFICATION = [
|
| 21 |
+
"AmazonCounterfactualClassification",
|
| 22 |
+
"AmazonPolarityClassification",
|
| 23 |
+
"AmazonReviewsClassification",
|
| 24 |
+
"Banking77Classification",
|
| 25 |
+
"EmotionClassification",
|
| 26 |
+
"ImdbClassification",
|
| 27 |
+
"MassiveIntentClassification",
|
| 28 |
+
"MassiveScenarioClassification",
|
| 29 |
+
"MTOPDomainClassification",
|
| 30 |
+
"MTOPIntentClassification",
|
| 31 |
+
"ToxicConversationsClassification",
|
| 32 |
+
"TweetSentimentExtractionClassification",
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
TASK_LIST_CLUSTERING = [
|
| 36 |
+
"ArxivClusteringP2P",
|
| 37 |
+
"ArxivClusteringS2S",
|
| 38 |
+
"BiorxivClusteringP2P",
|
| 39 |
+
"BiorxivClusteringS2S",
|
| 40 |
+
"MedrxivClusteringP2P",
|
| 41 |
+
"MedrxivClusteringS2S",
|
| 42 |
+
"RedditClustering",
|
| 43 |
+
"RedditClusteringP2P",
|
| 44 |
+
"StackExchangeClustering",
|
| 45 |
+
"StackExchangeClusteringP2P",
|
| 46 |
+
"TwentyNewsgroupsClustering",
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
TASK_LIST_PAIR_CLASSIFICATION = [
|
| 50 |
+
"SprintDuplicateQuestions",
|
| 51 |
+
"TwitterSemEval2015",
|
| 52 |
+
"TwitterURLCorpus",
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
TASK_LIST_RERANKING = [
|
| 56 |
+
"AskUbuntuDupQuestions",
|
| 57 |
+
"MindSmallReranking",
|
| 58 |
+
"SciDocsRR",
|
| 59 |
+
"StackOverflowDupQuestions",
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
TASK_LIST_RETRIEVAL = [
|
| 63 |
+
"ArguAna",
|
| 64 |
+
"ClimateFEVER",
|
| 65 |
+
"CQADupstackAndroidRetrieval",
|
| 66 |
+
"CQADupstackEnglishRetrieval",
|
| 67 |
+
"CQADupstackGamingRetrieval",
|
| 68 |
+
"CQADupstackGisRetrieval",
|
| 69 |
+
"CQADupstackMathematicaRetrieval",
|
| 70 |
+
"CQADupstackPhysicsRetrieval",
|
| 71 |
+
"CQADupstackProgrammersRetrieval",
|
| 72 |
+
"CQADupstackStatsRetrieval",
|
| 73 |
+
"CQADupstackTexRetrieval",
|
| 74 |
+
"CQADupstackUnixRetrieval",
|
| 75 |
+
"CQADupstackWebmastersRetrieval",
|
| 76 |
+
"CQADupstackWordpressRetrieval",
|
| 77 |
+
"DBPedia",
|
| 78 |
+
"FEVER",
|
| 79 |
+
"FiQA2018",
|
| 80 |
+
"HotpotQA",
|
| 81 |
+
"MSMARCO",
|
| 82 |
+
"NFCorpus",
|
| 83 |
+
"NQ",
|
| 84 |
+
"QuoraRetrieval",
|
| 85 |
+
"SCIDOCS",
|
| 86 |
+
"SciFact",
|
| 87 |
+
"Touche2020",
|
| 88 |
+
"TRECCOVID",
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
TASK_LIST_STS = [
|
| 92 |
+
"BIOSSES",
|
| 93 |
+
"SICK-R",
|
| 94 |
+
"STS12",
|
| 95 |
+
"STS13",
|
| 96 |
+
"STS14",
|
| 97 |
+
"STS15",
|
| 98 |
+
"STS16",
|
| 99 |
+
"STS17",
|
| 100 |
+
"STS22",
|
| 101 |
+
"STSBenchmark",
|
| 102 |
+
"SummEval",
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
MTEB_TASK_LIST = (
|
| 106 |
+
TASK_LIST_CLASSIFICATION
|
| 107 |
+
+ TASK_LIST_CLUSTERING
|
| 108 |
+
+ TASK_LIST_PAIR_CLASSIFICATION
|
| 109 |
+
+ TASK_LIST_RERANKING
|
| 110 |
+
+ TASK_LIST_RETRIEVAL
|
| 111 |
+
+ TASK_LIST_STS
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
CMTEB_TASK_LIST = ['TNews', 'IFlyTek', 'MultilingualSentiment', 'JDReview', 'OnlineShopping', 'Waimai','AmazonReviewsClassification', 'MassiveIntentClassification', 'MassiveScenarioClassification', 'MultilingualSentiment',
|
| 116 |
+
'CLSClusteringS2S', 'CLSClusteringP2P', 'ThuNewsClusteringS2S', 'ThuNewsClusteringP2P',
|
| 117 |
+
'Ocnli', 'Cmnli',
|
| 118 |
+
'T2Reranking', 'MmarcoReranking', 'CMedQAv1', 'CMedQAv2',
|
| 119 |
+
'T2Retrieval', 'MMarcoRetrieval', 'DuRetrieval', 'CovidRetrieval', 'CmedqaRetrieval', 'EcomRetrieval', 'MedicalRetrieval', 'VideoRetrieval',
|
| 120 |
+
'ATEC', 'BQ', 'LCQMC', 'PAWSX', 'STSB', 'AFQMC', 'QBQTC', 'STS22']
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
logging.basicConfig(
|
| 125 |
+
level=logging.INFO,
|
| 126 |
+
format='%(asctime)s - %(levelname)s - %(name)s : %(message)s'
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
logger = logging.getLogger('eval_mteb_qwen.py')
|
| 130 |
+
|
| 131 |
+
def get_detailed_instruct(task_description: str) -> str:
|
| 132 |
+
if not task_description:
|
| 133 |
+
return ''
|
| 134 |
+
|
| 135 |
+
return 'Instruct: {}\nQuery: '.format(task_description)
|
| 136 |
+
|
| 137 |
+
def get_task_def_by_task_name_and_type(task_name: str, task_type: str, default_instruct='Given a web search query, retrieve relevant passages that answer the query') -> str:
|
| 138 |
+
if task_type in ['STS']:
|
| 139 |
+
# return "Given a premise, retrieve a hypothesis that is entailed by the premise."
|
| 140 |
+
return "Retrieve semantically similar text"
|
| 141 |
+
|
| 142 |
+
if task_type in ['Summarization']:
|
| 143 |
+
return "Given a news summary, retrieve other semantically similar summaries"
|
| 144 |
+
|
| 145 |
+
if task_type in ['BitextMining']:
|
| 146 |
+
return "Retrieve parallel sentences"
|
| 147 |
+
|
| 148 |
+
if task_type in ['Classification']:
|
| 149 |
+
task_name_to_instruct: Dict[str, str] = {
|
| 150 |
+
'AmazonCounterfactualClassification': 'Classify a given Amazon customer review text as either counterfactual or not-counterfactual',
|
| 151 |
+
'AmazonPolarityClassification': 'Classify Amazon reviews into positive or negative sentiment',
|
| 152 |
+
'AmazonReviewsClassification': 'Classify the given Amazon review into its appropriate rating category',
|
| 153 |
+
'Banking77Classification': 'Given a online banking query, find the corresponding intents',
|
| 154 |
+
'EmotionClassification': 'Classify the emotion expressed in the given Twitter message into one of the six emotions: anger, fear, joy, love, sadness, and surprise',
|
| 155 |
+
'ImdbClassification': 'Classify the sentiment expressed in the given movie review text from the IMDB dataset',
|
| 156 |
+
'MassiveIntentClassification': 'Given a user utterance as query, find the user intents',
|
| 157 |
+
'MassiveScenarioClassification': 'Given a user utterance as query, find the user scenarios',
|
| 158 |
+
'MTOPDomainClassification': 'Classify the intent domain of the given utterance in task-oriented conversation',
|
| 159 |
+
'MTOPIntentClassification': 'Classify the intent of the given utterance in task-oriented conversation',
|
| 160 |
+
'ToxicConversationsClassification': 'Classify the given comments as either toxic or not toxic',
|
| 161 |
+
'TweetSentimentExtractionClassification': 'Classify the sentiment of a given tweet as either positive, negative, or neutral',
|
| 162 |
+
# C-MTEB eval instructions
|
| 163 |
+
'TNews': 'Classify the fine-grained category of the given news title',
|
| 164 |
+
'IFlyTek': 'Given an App description text, find the appropriate fine-grained category',
|
| 165 |
+
'MultilingualSentiment': 'Classify sentiment of the customer review into positive, neutral, or negative',
|
| 166 |
+
'JDReview': 'Classify the customer review for iPhone on e-commerce platform into positive or negative',
|
| 167 |
+
'OnlineShopping': 'Classify the customer review for online shopping into positive or negative',
|
| 168 |
+
'Waimai': 'Classify the customer review from a food takeaway platform into positive or negative',
|
| 169 |
+
}
|
| 170 |
+
return task_name_to_instruct[task_name]
|
| 171 |
+
|
| 172 |
+
if task_type in ['Clustering']:
|
| 173 |
+
task_name_to_instruct: Dict[str, str] = {
|
| 174 |
+
'ArxivClusteringP2P': 'Identify the main and secondary category of Arxiv papers based on the titles and abstracts',
|
| 175 |
+
'ArxivClusteringS2S': 'Identify the main and secondary category of Arxiv papers based on the titles',
|
| 176 |
+
'BiorxivClusteringP2P': 'Identify the main category of Biorxiv papers based on the titles and abstracts',
|
| 177 |
+
'BiorxivClusteringS2S': 'Identify the main category of Biorxiv papers based on the titles',
|
| 178 |
+
'MedrxivClusteringP2P': 'Identify the main category of Medrxiv papers based on the titles and abstracts',
|
| 179 |
+
'MedrxivClusteringS2S': 'Identify the main category of Medrxiv papers based on the titles',
|
| 180 |
+
'RedditClustering': 'Identify the topic or theme of Reddit posts based on the titles',
|
| 181 |
+
'RedditClusteringP2P': 'Identify the topic or theme of Reddit posts based on the titles and posts',
|
| 182 |
+
'StackExchangeClustering': 'Identify the topic or theme of StackExchange posts based on the titles',
|
| 183 |
+
'StackExchangeClusteringP2P': 'Identify the topic or theme of StackExchange posts based on the given paragraphs',
|
| 184 |
+
'TwentyNewsgroupsClustering': 'Identify the topic or theme of the given news articles',
|
| 185 |
+
# C-MTEB eval instructions
|
| 186 |
+
'CLSClusteringS2S': 'Identify the main category of scholar papers based on the titles',
|
| 187 |
+
'CLSClusteringP2P': 'Identify the main category of scholar papers based on the titles and abstracts',
|
| 188 |
+
'ThuNewsClusteringS2S': 'Identify the topic or theme of the given news articles based on the titles',
|
| 189 |
+
'ThuNewsClusteringP2P': 'Identify the topic or theme of the given news articles based on the titles and contents',
|
| 190 |
+
}
|
| 191 |
+
return task_name_to_instruct[task_name]
|
| 192 |
+
|
| 193 |
+
if task_type in ['Reranking', 'PairClassification']:
|
| 194 |
+
task_name_to_instruct: Dict[str, str] = {
|
| 195 |
+
'AskUbuntuDupQuestions': 'Retrieve duplicate questions from AskUbuntu forum',
|
| 196 |
+
'MindSmallReranking': 'Retrieve relevant news articles based on user browsing history',
|
| 197 |
+
'SciDocsRR': 'Given a title of a scientific paper, retrieve the titles of other relevant papers',
|
| 198 |
+
'StackOverflowDupQuestions': 'Retrieve duplicate questions from StackOverflow forum',
|
| 199 |
+
'SprintDuplicateQuestions': 'Retrieve duplicate questions from Sprint forum',
|
| 200 |
+
'TwitterSemEval2015': 'Retrieve tweets that are semantically similar to the given tweet',
|
| 201 |
+
'TwitterURLCorpus': 'Retrieve tweets that are semantically similar to the given tweet',
|
| 202 |
+
# C-MTEB eval instructions
|
| 203 |
+
'T2Reranking': 'Given a Chinese search query, retrieve web passages that answer the question',
|
| 204 |
+
'MmarcoReranking': 'Given a Chinese search query, retrieve web passages that answer the question',
|
| 205 |
+
'CMedQAv1': 'Given a Chinese community medical question, retrieve replies that best answer the question',
|
| 206 |
+
'CMedQAv2': 'Given a Chinese community medical question, retrieve replies that best answer the question',
|
| 207 |
+
'Ocnli': 'Retrieve semantically similar text.',
|
| 208 |
+
'Cmnli': 'Retrieve semantically similar text.',
|
| 209 |
+
}
|
| 210 |
+
return task_name_to_instruct[task_name]
|
| 211 |
+
|
| 212 |
+
if task_type in ['Retrieval']:
|
| 213 |
+
if task_name.lower().startswith('cqadupstack'):
|
| 214 |
+
return 'Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question'
|
| 215 |
+
|
| 216 |
+
task_name_to_instruct: Dict[str, str] = {
|
| 217 |
+
'ArguAna': 'Given a claim, find documents that refute the claim',
|
| 218 |
+
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
|
| 219 |
+
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
|
| 220 |
+
'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
|
| 221 |
+
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
|
| 222 |
+
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
|
| 223 |
+
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
|
| 224 |
+
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
|
| 225 |
+
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
|
| 226 |
+
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
|
| 227 |
+
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
|
| 228 |
+
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
|
| 229 |
+
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
|
| 230 |
+
'TRECCOVID': 'Given a query on COVID-19, retrieve documents that answer the query',
|
| 231 |
+
# C-MTEB eval instructions
|
| 232 |
+
'T2Retrieval': 'Given a Chinese search query, retrieve web passages that answer the question',
|
| 233 |
+
'MMarcoRetrieval': 'Given a web search query, retrieve relevant passages that answer the query',
|
| 234 |
+
'DuRetrieval': 'Given a Chinese search query, retrieve web passages that answer the question',
|
| 235 |
+
'CovidRetrieval': 'Given a question on COVID-19, retrieve news articles that answer the question',
|
| 236 |
+
'CmedqaRetrieval': 'Given a Chinese community medical question, retrieve replies that best answer the question',
|
| 237 |
+
'EcomRetrieval': 'Given a user query from an e-commerce website, retrieve description sentences of relevant products',
|
| 238 |
+
'MedicalRetrieval': 'Given a medical question, retrieve user replies that best answer the question',
|
| 239 |
+
'VideoRetrieval': 'Given a video search query, retrieve the titles of relevant videos',
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
# add lower case keys to match some beir names
|
| 243 |
+
task_name_to_instruct.update({k.lower(): v for k, v in task_name_to_instruct.items()})
|
| 244 |
+
# other cases where lower case match still doesn't work
|
| 245 |
+
task_name_to_instruct['trec-covid'] = task_name_to_instruct['TRECCOVID']
|
| 246 |
+
task_name_to_instruct['climate-fever'] = task_name_to_instruct['ClimateFEVER']
|
| 247 |
+
task_name_to_instruct['dbpedia-entity'] = task_name_to_instruct['DBPedia']
|
| 248 |
+
task_name_to_instruct['webis-touche2020'] = task_name_to_instruct['Touche2020']
|
| 249 |
+
task_name_to_instruct['fiqa'] = task_name_to_instruct['FiQA2018']
|
| 250 |
+
task_name_to_instruct['quora'] = task_name_to_instruct['QuoraRetrieval']
|
| 251 |
+
|
| 252 |
+
# for miracl evaluation
|
| 253 |
+
task_name_to_instruct['miracl'] = 'Given a question, retrieve Wikipedia passages that answer the question'
|
| 254 |
+
|
| 255 |
+
return task_name_to_instruct[task_name]
|
| 256 |
+
logging.warning(f"No instruction config for task {task_name} with type {task_type}, use default instruction.")
|
| 257 |
+
return default_instruct
|
| 258 |
+
|
| 259 |
+
class Encoder(torch.nn.Module):
|
| 260 |
+
def __init__(self, name_or_path:str, pooling: str):
|
| 261 |
+
super().__init__()
|
| 262 |
+
self.model = AutoModel.from_pretrained(name_or_path, trust_remote_code=True)
|
| 263 |
+
self.model = self.model.half()
|
| 264 |
+
self.model.eval()
|
| 265 |
+
self.pooling = pooling
|
| 266 |
+
|
| 267 |
+
def forward(self, **features) -> torch.Tensor:
|
| 268 |
+
output = self.model(**features, output_hidden_states=True, return_dict=True)
|
| 269 |
+
hidden_state = output.hidden_states[-1]
|
| 270 |
+
embeddings = self.pooler(hidden_state, **features)
|
| 271 |
+
return embeddings
|
| 272 |
+
|
| 273 |
+
def pooler(
|
| 274 |
+
self,
|
| 275 |
+
hidden_state: torch.Tensor,
|
| 276 |
+
attention_mask: torch.Tensor,
|
| 277 |
+
**kwargs
|
| 278 |
+
) -> torch.Tensor:
|
| 279 |
+
if attention_mask.ndim == 2:
|
| 280 |
+
mask_expanded = attention_mask.unsqueeze(-1).expand(hidden_state.size())
|
| 281 |
+
elif attention_mask.ndim == 3:
|
| 282 |
+
mask_expanded = attention_mask
|
| 283 |
+
else:
|
| 284 |
+
raise RuntimeError(f"Unexpected {attention_mask.ndim=}")
|
| 285 |
+
|
| 286 |
+
hidden_state = hidden_state * mask_expanded
|
| 287 |
+
|
| 288 |
+
if self.pooling == 'first':
|
| 289 |
+
pooled_output = hidden_state[:, 0]
|
| 290 |
+
|
| 291 |
+
elif self.pooling == 'last':
|
| 292 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
| 293 |
+
if left_padding:
|
| 294 |
+
return hidden_state[:, -1]
|
| 295 |
+
else:
|
| 296 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
| 297 |
+
batch_size = hidden_state.shape[0]
|
| 298 |
+
return hidden_state[torch.arange(batch_size, device=hidden_state.device), sequence_lengths]
|
| 299 |
+
elif self.pooling == 'mean':
|
| 300 |
+
# TODO: weight
|
| 301 |
+
lengths = mask_expanded.sum(1).clamp(min=1e-9)
|
| 302 |
+
pooled_output = hidden_state.sum(dim=1) / lengths
|
| 303 |
+
|
| 304 |
+
elif self.pooling == 'weightedmean':
|
| 305 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(hidden_state.size()).float()
|
| 306 |
+
# hidden_state shape: bs, seq, hidden_dim
|
| 307 |
+
weights = (
|
| 308 |
+
torch.arange(start=1, end=hidden_state.shape[1] + 1)
|
| 309 |
+
.unsqueeze(0)
|
| 310 |
+
.unsqueeze(-1)
|
| 311 |
+
.expand(hidden_state.size())
|
| 312 |
+
.float().to(hidden_state.device)
|
| 313 |
+
)
|
| 314 |
+
assert weights.shape == hidden_state.shape == input_mask_expanded.shape
|
| 315 |
+
input_mask_expanded = input_mask_expanded * weights
|
| 316 |
+
|
| 317 |
+
sum_embeddings = torch.sum(hidden_state * input_mask_expanded, 1)
|
| 318 |
+
sum_mask = input_mask_expanded.sum(1)
|
| 319 |
+
sum_mask = torch.clamp(sum_mask, min=1e-9)
|
| 320 |
+
pooled_output = sum_embeddings / sum_mask
|
| 321 |
+
|
| 322 |
+
else:
|
| 323 |
+
raise ValueError(f"Wrong pooler mode : {self.pooling}")
|
| 324 |
+
return pooled_output
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
class Wrapper:
|
| 328 |
+
def __init__(
|
| 329 |
+
self,
|
| 330 |
+
tokenizer,
|
| 331 |
+
encoder: Encoder,
|
| 332 |
+
batch_size: int,
|
| 333 |
+
max_seq_len: int = 512,
|
| 334 |
+
normalize_embeddings: bool = False,
|
| 335 |
+
default_query: bool = False,
|
| 336 |
+
force_default: bool = False,
|
| 337 |
+
sep: str = " ",
|
| 338 |
+
mp_tensor_to_cuda: bool = False,
|
| 339 |
+
instruction: str = None,
|
| 340 |
+
attn_type: str = None
|
| 341 |
+
):
|
| 342 |
+
self.tokenizer = tokenizer
|
| 343 |
+
self.model = encoder
|
| 344 |
+
self.batch_size = batch_size
|
| 345 |
+
self.max_seq_len = max_seq_len
|
| 346 |
+
self.pool: dict = None
|
| 347 |
+
self.normalize_embeddings = normalize_embeddings
|
| 348 |
+
self.mp_tensor_to_cuda = mp_tensor_to_cuda
|
| 349 |
+
self._target_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 350 |
+
self.eod_id = self.tokenizer.convert_tokens_to_ids("<|endoftext|>")
|
| 351 |
+
self.instruction = instruction
|
| 352 |
+
|
| 353 |
+
if self.tokenizer.padding_side != 'right':
|
| 354 |
+
logger.warning(f"Change tokenizer.padding_side from {self.tokenizer.padding_side} to right")
|
| 355 |
+
self.tokenizer.padding_side = 'right'
|
| 356 |
+
if self.tokenizer.pad_token is None:
|
| 357 |
+
logger.warning(f"Set tokenizer.pad_token as eos_token {self.tokenizer.eos_token}")
|
| 358 |
+
self.tokenizer.pad_token='<|endoftext|>'
|
| 359 |
+
|
| 360 |
+
def start(self, target_devices: Optional[List[str]] = None):
|
| 361 |
+
"""
|
| 362 |
+
Starts multi process to process the encoding with several, independent processes.
|
| 363 |
+
This method is recommended if you want to encode on multiple GPUs. It is advised
|
| 364 |
+
to start only one process per GPU. This method works together with encode_multi_process
|
| 365 |
+
|
| 366 |
+
:param target_devices: PyTorch target devices, e.g. cuda:0, cuda:1... If None, all available CUDA devices will be used
|
| 367 |
+
:return: Returns a dict with the target processes, an input queue and and output queue.
|
| 368 |
+
"""
|
| 369 |
+
if target_devices is None:
|
| 370 |
+
if torch.cuda.is_available():
|
| 371 |
+
target_devices = ['cuda:{}'.format(i) for i in range(torch.cuda.device_count())]
|
| 372 |
+
else:
|
| 373 |
+
logger.info("CUDA is not available. Start 4 CPU worker")
|
| 374 |
+
target_devices = ['cpu']*4
|
| 375 |
+
|
| 376 |
+
logger.info("Start multi-process pool on devices: {}".format(', '.join(map(str, target_devices))))
|
| 377 |
+
print('multi instruction', self.instruction)
|
| 378 |
+
ctx = mp.get_context('spawn')
|
| 379 |
+
input_queue = ctx.Queue()
|
| 380 |
+
output_queue = ctx.Queue()
|
| 381 |
+
processes = []
|
| 382 |
+
|
| 383 |
+
for cuda_id in target_devices:
|
| 384 |
+
p = ctx.Process(
|
| 385 |
+
target=self._encode_multi_process_worker,
|
| 386 |
+
args=(cuda_id, self, input_queue, output_queue),
|
| 387 |
+
daemon=True
|
| 388 |
+
)
|
| 389 |
+
p.start()
|
| 390 |
+
processes.append(p)
|
| 391 |
+
|
| 392 |
+
self.pool = {'input': input_queue, 'output': output_queue, 'processes': processes}
|
| 393 |
+
|
| 394 |
+
def stop(self):
|
| 395 |
+
"""
|
| 396 |
+
Stops all processes started with start_multi_process_pool
|
| 397 |
+
"""
|
| 398 |
+
for p in self.pool['processes']:
|
| 399 |
+
p.terminate()
|
| 400 |
+
|
| 401 |
+
for p in self.pool['processes']:
|
| 402 |
+
p.join()
|
| 403 |
+
p.close()
|
| 404 |
+
|
| 405 |
+
self.pool['input'].close()
|
| 406 |
+
self.pool['output'].close()
|
| 407 |
+
|
| 408 |
+
@staticmethod
|
| 409 |
+
def _encode_multi_process_worker(target_device: str, model, input_queue, results_queue):
|
| 410 |
+
"""
|
| 411 |
+
Internal working process to encode sentences in multi-process setup
|
| 412 |
+
"""
|
| 413 |
+
while True:
|
| 414 |
+
try:
|
| 415 |
+
id, sentences, kwargs = input_queue.get()
|
| 416 |
+
kwargs.update(device=target_device, show_progress_bar=False, convert_to_numpy=True)
|
| 417 |
+
embeddings = model._encode(sentences, **kwargs)
|
| 418 |
+
results_queue.put([id, embeddings])
|
| 419 |
+
except queue.Empty:
|
| 420 |
+
break
|
| 421 |
+
|
| 422 |
+
def encode_multi_process(
|
| 423 |
+
self,
|
| 424 |
+
sentences: List[str],
|
| 425 |
+
**kwargs
|
| 426 |
+
):
|
| 427 |
+
"""
|
| 428 |
+
This method allows to run encode() on multiple GPUs. The sentences are chunked into smaller packages
|
| 429 |
+
and sent to individual processes, which encode these on the different GPUs. This method is only suitable
|
| 430 |
+
for encoding large sets of sentences
|
| 431 |
+
|
| 432 |
+
:param sentences: List of sentences
|
| 433 |
+
:param pool: A pool of workers started with SentenceTransformer.start_multi_process_pool
|
| 434 |
+
:param chunk_size: Sentences are chunked and sent to the individual processes. If none, it determine a sensible size.
|
| 435 |
+
:param kwargs: other keyword arguments for model.encode() such as batch_size
|
| 436 |
+
:return: Numpy matrix with all embeddings
|
| 437 |
+
"""
|
| 438 |
+
part_size = math.ceil(len(sentences) / len(self.pool["processes"]))
|
| 439 |
+
chunk_size = part_size if part_size < 3200 else 3200 # for retrieval chunk 50000
|
| 440 |
+
|
| 441 |
+
logger.debug(f"Chunk data into {math.ceil(len(sentences) / chunk_size)} packages of size {chunk_size}")
|
| 442 |
+
|
| 443 |
+
input_queue = self.pool['input']
|
| 444 |
+
last_chunk_id = 0
|
| 445 |
+
chunk = []
|
| 446 |
+
|
| 447 |
+
for sentence in sentences:
|
| 448 |
+
chunk.append(sentence)
|
| 449 |
+
if len(chunk) >= chunk_size:
|
| 450 |
+
input_queue.put([last_chunk_id, chunk, kwargs])
|
| 451 |
+
last_chunk_id += 1
|
| 452 |
+
chunk = []
|
| 453 |
+
|
| 454 |
+
if len(chunk) > 0:
|
| 455 |
+
input_queue.put([last_chunk_id, chunk, kwargs])
|
| 456 |
+
last_chunk_id += 1
|
| 457 |
+
|
| 458 |
+
output_queue = self.pool['output']
|
| 459 |
+
results_list = sorted([output_queue.get() for _ in range(last_chunk_id)], key=lambda x: x[0])
|
| 460 |
+
embeddings = np.concatenate([result[1] for result in results_list])
|
| 461 |
+
return embeddings
|
| 462 |
+
|
| 463 |
+
@staticmethod
|
| 464 |
+
def batch_to_device(batch, target_device):
|
| 465 |
+
"""
|
| 466 |
+
send a pytorch batch to a device (CPU/GPU)
|
| 467 |
+
"""
|
| 468 |
+
for key in batch:
|
| 469 |
+
if isinstance(batch[key], torch.Tensor):
|
| 470 |
+
batch[key] = batch[key].to(target_device)
|
| 471 |
+
return batch
|
| 472 |
+
|
| 473 |
+
def _text_length(self, text: Union[List[int], List[List[int]]]):
|
| 474 |
+
"""
|
| 475 |
+
Help function to get the length for the input text. Text can be either
|
| 476 |
+
a list of ints (which means a single text as input), or a tuple of list of ints
|
| 477 |
+
(representing several text inputs to the model).
|
| 478 |
+
"""
|
| 479 |
+
|
| 480 |
+
if isinstance(text, dict): #{key: value} case
|
| 481 |
+
return len(next(iter(text.values())))
|
| 482 |
+
elif not hasattr(text, '__len__'): #Object has no len() method
|
| 483 |
+
return 1
|
| 484 |
+
elif len(text) == 0 or isinstance(text[0], int): #Empty string or list of ints
|
| 485 |
+
return len(text)
|
| 486 |
+
else:
|
| 487 |
+
return sum([len(t) for t in text]) #Sum of length of individual strings
|
| 488 |
+
|
| 489 |
+
def _tokenize(self, sentences: List[str], is_query: bool):
|
| 490 |
+
|
| 491 |
+
batch_dict = tokenizer(sentences, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
| 492 |
+
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
| 493 |
+
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
| 494 |
+
batch_dict['is_causal'] = False
|
| 495 |
+
return batch_dict
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
def _encode(
|
| 499 |
+
self,
|
| 500 |
+
sentences: List[str],
|
| 501 |
+
is_query: bool,
|
| 502 |
+
convert_to_numpy: bool = True,
|
| 503 |
+
convert_to_tensor: bool = False,
|
| 504 |
+
device: str = None,
|
| 505 |
+
show_progress_bar: bool = True,
|
| 506 |
+
**kwargs
|
| 507 |
+
):
|
| 508 |
+
"""
|
| 509 |
+
Computes sentence embeddings
|
| 510 |
+
|
| 511 |
+
:param sentences: the sentences to embed
|
| 512 |
+
:param batch_size: the batch size used for the computation
|
| 513 |
+
:param show_progress_bar: Output a progress bar when encode sentences
|
| 514 |
+
:param output_value: Default sentence_embedding, to get sentence embeddings. Can be set to token_embeddings to get wordpiece token embeddings. Set to None, to get all output values
|
| 515 |
+
:param convert_to_numpy: If true, the output is a list of numpy vectors. Else, it is a list of pytorch tensors.
|
| 516 |
+
:param convert_to_tensor: If true, you get one large tensor as return. Overwrites any setting from convert_to_numpy
|
| 517 |
+
:param device: Which torch.device to use for the computation
|
| 518 |
+
:param normalize_embeddings: If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used.
|
| 519 |
+
|
| 520 |
+
:return:
|
| 521 |
+
By default, a list of tensors is returned. If convert_to_tensor, a stacked tensor is returned. If convert_to_numpy, a numpy matrix is returned.
|
| 522 |
+
"""
|
| 523 |
+
self.model.eval()
|
| 524 |
+
|
| 525 |
+
if convert_to_tensor:
|
| 526 |
+
convert_to_numpy = False
|
| 527 |
+
|
| 528 |
+
input_was_string = False
|
| 529 |
+
if isinstance(sentences, str) or not hasattr(sentences, '__len__'): #Cast an individual sentence to a list with length 1
|
| 530 |
+
sentences = [sentences]
|
| 531 |
+
input_was_string = True
|
| 532 |
+
|
| 533 |
+
if device is None:
|
| 534 |
+
device = self._target_device
|
| 535 |
+
|
| 536 |
+
self.model.to(device)
|
| 537 |
+
|
| 538 |
+
all_embeddings = []
|
| 539 |
+
length_sorted_idx = np.argsort([-self._text_length(s) for s in sentences])
|
| 540 |
+
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
|
| 541 |
+
|
| 542 |
+
for start_index in trange(0, len(sentences), self.batch_size, desc="Batches", disable=not show_progress_bar):
|
| 543 |
+
sentences_batch = sentences_sorted[start_index:start_index + self.batch_size]
|
| 544 |
+
features = self._tokenize(sentences_batch, is_query)
|
| 545 |
+
features = self.batch_to_device(features, device)
|
| 546 |
+
|
| 547 |
+
with torch.no_grad():
|
| 548 |
+
embeddings = self.model(**features)
|
| 549 |
+
|
| 550 |
+
if self.normalize_embeddings:
|
| 551 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
| 552 |
+
|
| 553 |
+
# fixes for #522 and #487 to avoid oom problems on gpu with large datasets
|
| 554 |
+
if convert_to_numpy:
|
| 555 |
+
embeddings = embeddings.cpu()
|
| 556 |
+
|
| 557 |
+
all_embeddings.extend(embeddings)
|
| 558 |
+
|
| 559 |
+
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
|
| 560 |
+
|
| 561 |
+
if convert_to_tensor:
|
| 562 |
+
all_embeddings = torch.stack(all_embeddings)
|
| 563 |
+
elif convert_to_numpy:
|
| 564 |
+
#all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
|
| 565 |
+
all_embeddings = np.asarray([emb.to(torch.float).numpy() for emb in all_embeddings])
|
| 566 |
+
if input_was_string:
|
| 567 |
+
all_embeddings = all_embeddings[0]
|
| 568 |
+
|
| 569 |
+
return all_embeddings
|
| 570 |
+
|
| 571 |
+
def encode(
|
| 572 |
+
self,
|
| 573 |
+
sentences: List[str],
|
| 574 |
+
is_query: Optional[bool] = None,
|
| 575 |
+
convert_to_tensor: bool = False,
|
| 576 |
+
**kwargs
|
| 577 |
+
):
|
| 578 |
+
is_query = self.default_query if is_query is None else is_query
|
| 579 |
+
if is_query and self.instruction:
|
| 580 |
+
sentences = [self.instruction + sent for sent in sentences]
|
| 581 |
+
kwargs.update(is_query=is_query)
|
| 582 |
+
if self.pool is not None:
|
| 583 |
+
kwargs.update(show_progress_bar=False)
|
| 584 |
+
embeddings = self.encode_multi_process(sentences, **kwargs)
|
| 585 |
+
if convert_to_tensor:
|
| 586 |
+
embeddings = torch.from_numpy(embeddings)
|
| 587 |
+
if self.mp_tensor_to_cuda and torch.cuda.is_available():
|
| 588 |
+
embeddings = embeddings.to(torch.device('cuda')) # default 0-th gpu
|
| 589 |
+
return embeddings
|
| 590 |
+
|
| 591 |
+
return self._encode(sentences, convert_to_tensor=convert_to_tensor, **kwargs)
|
| 592 |
+
|
| 593 |
+
def encode_queries(self, queries: List[str], **kwargs):
|
| 594 |
+
is_query = self.default_query if self.force_default else True
|
| 595 |
+
return self.encode(queries, is_query=is_query, **kwargs)
|
| 596 |
+
|
| 597 |
+
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
|
| 598 |
+
# borrowed from mteb.abstasks.AbsTaskRetrieval.DRESModel
|
| 599 |
+
if type(corpus) is dict:
|
| 600 |
+
sentences = [
|
| 601 |
+
(corpus["title"][i] + self.sep + corpus["text"][i]).strip()
|
| 602 |
+
if "title" in corpus
|
| 603 |
+
else corpus["text"][i].strip()
|
| 604 |
+
for i in range(len(corpus["text"]))
|
| 605 |
+
]
|
| 606 |
+
elif isinstance(corpus[0], dict):
|
| 607 |
+
sentences = [
|
| 608 |
+
(doc["title"] + self.sep + doc["text"]).strip() if "title" in doc else doc["text"].strip()
|
| 609 |
+
for doc in corpus
|
| 610 |
+
]
|
| 611 |
+
else:
|
| 612 |
+
sentences = corpus
|
| 613 |
+
is_query = self.default_query if self.force_default else False
|
| 614 |
+
return self.encode(sentences, is_query=is_query, **kwargs)
|
| 615 |
+
|
| 616 |
+
def main(args):
|
| 617 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
|
| 618 |
+
encoder = Encoder(args.model, args.pooling)
|
| 619 |
+
model = Wrapper(
|
| 620 |
+
tokenizer, encoder,
|
| 621 |
+
batch_size=args.batch_size,
|
| 622 |
+
max_seq_len=args.max_seq_len,
|
| 623 |
+
normalize_embeddings=args.norm
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
if args.task == 'mteb':
|
| 627 |
+
task_names = MTEB_TASK_LIST
|
| 628 |
+
lang = ['en']
|
| 629 |
+
elif args.task == 'cmteb':
|
| 630 |
+
task_names = CMTEB_TASK_LIST
|
| 631 |
+
lang = ['zh','zh-CN']
|
| 632 |
+
else:
|
| 633 |
+
task_names = [args.task]
|
| 634 |
+
lang = ['en','zh','zh-CN']
|
| 635 |
+
for task in task_names:
|
| 636 |
+
evaluation = MTEB(tasks=[task], task_langs=lang)
|
| 637 |
+
task_cls = evaluation.tasks[0]
|
| 638 |
+
task_name: str = task_cls.description['name']
|
| 639 |
+
task_type: str = task_cls.description['type']
|
| 640 |
+
instruction = get_task_def_by_task_name_and_type(task_name, task_type)
|
| 641 |
+
model.instruction = get_detailed_instruct(instruction)
|
| 642 |
+
if task == 'MSMARCO':
|
| 643 |
+
eval_splits = ["dev"]
|
| 644 |
+
elif task in CMTEB_TASK_LIST:
|
| 645 |
+
eval_splits = task_cls.description['eval_splits']
|
| 646 |
+
else:
|
| 647 |
+
eval_splits = ["test"]
|
| 648 |
+
|
| 649 |
+
evaluation.run(model, output_folder=args.output_dir, eval_splits=eval_splits)
|
| 650 |
+
print('\n')
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
if __name__ == "__main__":
|
| 654 |
+
_PARSER = argparse.ArgumentParser()
|
| 655 |
+
_PARSER.add_argument(
|
| 656 |
+
"-m", "--model", type=str, default=None
|
| 657 |
+
)
|
| 658 |
+
_PARSER.add_argument("--pooling", type=str, default='last')
|
| 659 |
+
_PARSER.add_argument("--output_dir", type=str, default=None)
|
| 660 |
+
_PARSER.add_argument("--default_type", type=str, default='query')
|
| 661 |
+
_PARSER.add_argument("--max_seq_len", type=int, default=512)
|
| 662 |
+
_PARSER.add_argument("-b", "--batch_size", type=int, default=32)
|
| 663 |
+
_PARSER.add_argument(
|
| 664 |
+
"-t", "--task", type=str, default=None # None for running default tasks
|
| 665 |
+
)
|
| 666 |
+
_PARSER.add_argument("--norm", action="store_true")
|
| 667 |
+
_ARGS = _PARSER.parse_args()
|
| 668 |
+
main(_ARGS)
|