Upload model code
Browse files
model.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torchvision import models
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class ICN(nn.Module, PyTorchModelHubMixin):
|
| 9 |
+
def __init__(self):
|
| 10 |
+
super().__init__()
|
| 11 |
+
|
| 12 |
+
cnn = models.resnet50(pretrained=False)
|
| 13 |
+
self.cnn_head = nn.Sequential(
|
| 14 |
+
*list(cnn.children())[:4],
|
| 15 |
+
*list(list(list(cnn.children())[4].children())[0].children())[:4],
|
| 16 |
+
)
|
| 17 |
+
self.cnn_tail = nn.Sequential(
|
| 18 |
+
*list(list(cnn.children())[4].children()
|
| 19 |
+
)[1:], *list(cnn.children())[5:-2]
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
self.conv1 = nn.Conv2d(128, 256, 3, padding=1)
|
| 23 |
+
self.bn1 = nn.BatchNorm2d(num_features=256)
|
| 24 |
+
|
| 25 |
+
self.fc1 = nn.Linear(2048 * 7 * 7, 256)
|
| 26 |
+
self.fc2 = nn.Linear(256, 7 * 7)
|
| 27 |
+
|
| 28 |
+
self.cls_fc = nn.Linear(256, 3)
|
| 29 |
+
|
| 30 |
+
self.criterion = nn.CrossEntropyLoss()
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
# Input: [-1, 6, 224, 224]
|
| 34 |
+
real = x[:, :3, :, :]
|
| 35 |
+
fake = x[:, 3:, :, :]
|
| 36 |
+
|
| 37 |
+
# Push both images through pretrained backbone
|
| 38 |
+
real_features = F.relu(self.cnn_head(real)) # [-1, 64, 56, 56]
|
| 39 |
+
fake_features = F.relu(self.cnn_head(fake)) # [-1, 64, 56, 56]
|
| 40 |
+
|
| 41 |
+
# [-1, 128, 56, 56]
|
| 42 |
+
combined = torch.cat((real_features, fake_features), 1)
|
| 43 |
+
|
| 44 |
+
x = self.conv1(combined) # [-1, 256, 56, 56]
|
| 45 |
+
x = self.bn1(x)
|
| 46 |
+
x = F.relu(x)
|
| 47 |
+
|
| 48 |
+
x = self.cnn_tail(x)
|
| 49 |
+
x = x.view(-1, 2048 * 7 * 7)
|
| 50 |
+
|
| 51 |
+
# Final feature [-1, 256]
|
| 52 |
+
d = F.relu(self.fc1(x))
|
| 53 |
+
|
| 54 |
+
# Heatmap [-1, 49]
|
| 55 |
+
grid = self.fc2(d)
|
| 56 |
+
|
| 57 |
+
# Classifier [-1, 1]
|
| 58 |
+
cl = self.cls_fc(d)
|
| 59 |
+
|
| 60 |
+
return grid, cl
|