Initial Commit
Browse files- .gitattributes +9 -19
- README.md +225 -0
- classifier.ckpt +3 -0
- embedding_model.ckpt +3 -0
- hyperparams.yaml +52 -0
- label_encoder.txt +109 -0
- normalizer.ckpt +3 -0
.gitattributes
CHANGED
|
@@ -1,27 +1,17 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.
|
| 6 |
-
*.
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.
|
| 20 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 4 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 11 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
| 14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: multilingual
|
| 3 |
+
thumbnail:
|
| 4 |
+
tags:
|
| 5 |
+
- audio-classification
|
| 6 |
+
- speechbrain
|
| 7 |
+
- embeddings
|
| 8 |
+
- Language
|
| 9 |
+
- Identification
|
| 10 |
+
- pytorch
|
| 11 |
+
- ECAPA-TDNN
|
| 12 |
+
- TDNN
|
| 13 |
+
- VoxLingua107
|
| 14 |
+
license: "apache-2.0"
|
| 15 |
+
datasets:
|
| 16 |
+
- VoxLingua107
|
| 17 |
+
metrics:
|
| 18 |
+
- Accuracy
|
| 19 |
+
widget:
|
| 20 |
+
- label: English Sample
|
| 21 |
+
src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# VoxLingua107 ECAPA-TDNN Spoken Language Identification Model
|
| 25 |
+
|
| 26 |
+
## Model description
|
| 27 |
+
|
| 28 |
+
This is a spoken language recognition model trained on the VoxLingua107 dataset using SpeechBrain.
|
| 29 |
+
The model uses the ECAPA-TDNN architecture that has previously been used for speaker recognition.
|
| 30 |
+
|
| 31 |
+
The model can classify a speech utterance according to the language spoken.
|
| 32 |
+
It covers 107 different languages (
|
| 33 |
+
Abkhazian,
|
| 34 |
+
Afrikaans,
|
| 35 |
+
Amharic,
|
| 36 |
+
Arabic,
|
| 37 |
+
Assamese,
|
| 38 |
+
Azerbaijani,
|
| 39 |
+
Bashkir,
|
| 40 |
+
Belarusian,
|
| 41 |
+
Bulgarian,
|
| 42 |
+
Bengali,
|
| 43 |
+
Tibetan,
|
| 44 |
+
Breton,
|
| 45 |
+
Bosnian,
|
| 46 |
+
Catalan,
|
| 47 |
+
Cebuano,
|
| 48 |
+
Czech,
|
| 49 |
+
Welsh,
|
| 50 |
+
Danish,
|
| 51 |
+
German,
|
| 52 |
+
Greek,
|
| 53 |
+
English,
|
| 54 |
+
Esperanto,
|
| 55 |
+
Spanish,
|
| 56 |
+
Estonian,
|
| 57 |
+
Basque,
|
| 58 |
+
Persian,
|
| 59 |
+
Finnish,
|
| 60 |
+
Faroese,
|
| 61 |
+
French,
|
| 62 |
+
Galician,
|
| 63 |
+
Guarani,
|
| 64 |
+
Gujarati,
|
| 65 |
+
Manx,
|
| 66 |
+
Hausa,
|
| 67 |
+
Hawaiian,
|
| 68 |
+
Hindi,
|
| 69 |
+
Croatian,
|
| 70 |
+
Haitian,
|
| 71 |
+
Hungarian,
|
| 72 |
+
Armenian,
|
| 73 |
+
Interlingua,
|
| 74 |
+
Indonesian,
|
| 75 |
+
Icelandic,
|
| 76 |
+
Italian,
|
| 77 |
+
Hebrew,
|
| 78 |
+
Japanese,
|
| 79 |
+
Javanese,
|
| 80 |
+
Georgian,
|
| 81 |
+
Kazakh,
|
| 82 |
+
Central Khmer,
|
| 83 |
+
Kannada,
|
| 84 |
+
Korean,
|
| 85 |
+
Latin,
|
| 86 |
+
Luxembourgish,
|
| 87 |
+
Lingala,
|
| 88 |
+
Lao,
|
| 89 |
+
Lithuanian,
|
| 90 |
+
Latvian,
|
| 91 |
+
Malagasy,
|
| 92 |
+
Maori,
|
| 93 |
+
Macedonian,
|
| 94 |
+
Malayalam,
|
| 95 |
+
Mongolian,
|
| 96 |
+
Marathi,
|
| 97 |
+
Malay,
|
| 98 |
+
Maltese,
|
| 99 |
+
Burmese,
|
| 100 |
+
Nepali,
|
| 101 |
+
Dutch,
|
| 102 |
+
Norwegian Nynorsk,
|
| 103 |
+
Norwegian,
|
| 104 |
+
Occitan,
|
| 105 |
+
Panjabi,
|
| 106 |
+
Polish,
|
| 107 |
+
Pushto,
|
| 108 |
+
Portuguese,
|
| 109 |
+
Romanian,
|
| 110 |
+
Russian,
|
| 111 |
+
Sanskrit,
|
| 112 |
+
Scots,
|
| 113 |
+
Sindhi,
|
| 114 |
+
Sinhala,
|
| 115 |
+
Slovak,
|
| 116 |
+
Slovenian,
|
| 117 |
+
Shona,
|
| 118 |
+
Somali,
|
| 119 |
+
Albanian,
|
| 120 |
+
Serbian,
|
| 121 |
+
Sundanese,
|
| 122 |
+
Swedish,
|
| 123 |
+
Swahili,
|
| 124 |
+
Tamil,
|
| 125 |
+
Telugu,
|
| 126 |
+
Tajik,
|
| 127 |
+
Thai,
|
| 128 |
+
Turkmen,
|
| 129 |
+
Tagalog,
|
| 130 |
+
Turkish,
|
| 131 |
+
Tatar,
|
| 132 |
+
Ukrainian,
|
| 133 |
+
Urdu,
|
| 134 |
+
Uzbek,
|
| 135 |
+
Vietnamese,
|
| 136 |
+
Waray,
|
| 137 |
+
Yiddish,
|
| 138 |
+
Yoruba,
|
| 139 |
+
Mandarin Chinese).
|
| 140 |
+
|
| 141 |
+
## Intended uses & limitations
|
| 142 |
+
|
| 143 |
+
The model has two uses:
|
| 144 |
+
|
| 145 |
+
- use 'as is' for spoken language recognition
|
| 146 |
+
- use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data
|
| 147 |
+
|
| 148 |
+
The model is trained on automatically collected YouTube data. For more
|
| 149 |
+
information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/).
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
#### How to use
|
| 153 |
+
|
| 154 |
+
```python
|
| 155 |
+
import torchaudio
|
| 156 |
+
from speechbrain.pretrained import EncoderClassifier
|
| 157 |
+
language_id = EncoderClassifier.from_hparams(source="TalTechNLP/voxlingua107-epaca-tdnn", savedir="tmp")
|
| 158 |
+
# Download Thai language sample from Omniglot and cvert to suitable form
|
| 159 |
+
signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3")
|
| 160 |
+
prediction = language_id.classify_batch(signal)
|
| 161 |
+
print(prediction)
|
| 162 |
+
(tensor([[0.3210, 0.3751, 0.3680, 0.3939, 0.4026, 0.3644, 0.3689, 0.3597, 0.3508,
|
| 163 |
+
0.3666, 0.3895, 0.3978, 0.3848, 0.3957, 0.3949, 0.3586, 0.4360, 0.3997,
|
| 164 |
+
0.4106, 0.3886, 0.4177, 0.3870, 0.3764, 0.3763, 0.3672, 0.4000, 0.4256,
|
| 165 |
+
0.4091, 0.3563, 0.3695, 0.3320, 0.3838, 0.3850, 0.3867, 0.3878, 0.3944,
|
| 166 |
+
0.3924, 0.4063, 0.3803, 0.3830, 0.2996, 0.4187, 0.3976, 0.3651, 0.3950,
|
| 167 |
+
0.3744, 0.4295, 0.3807, 0.3613, 0.4710, 0.3530, 0.4156, 0.3651, 0.3777,
|
| 168 |
+
0.3813, 0.6063, 0.3708, 0.3886, 0.3766, 0.4023, 0.3785, 0.3612, 0.4193,
|
| 169 |
+
0.3720, 0.4406, 0.3243, 0.3866, 0.3866, 0.4104, 0.4294, 0.4175, 0.3364,
|
| 170 |
+
0.3595, 0.3443, 0.3565, 0.3776, 0.3985, 0.3778, 0.2382, 0.4115, 0.4017,
|
| 171 |
+
0.4070, 0.3266, 0.3648, 0.3888, 0.3907, 0.3755, 0.3631, 0.4460, 0.3464,
|
| 172 |
+
0.3898, 0.3661, 0.3883, 0.3772, 0.9289, 0.3687, 0.4298, 0.4211, 0.3838,
|
| 173 |
+
0.3521, 0.3515, 0.3465, 0.4772, 0.4043, 0.3844, 0.3973, 0.4343]]), tensor([0.9289]), tensor([94]), ['th'])
|
| 174 |
+
# The scores in the prediction[0] tensor can be interpreted as cosine scores between
|
| 175 |
+
# the languages and the given utterance (i.e., the larger the better)
|
| 176 |
+
# The identified language ISO code is given in prediction[3]
|
| 177 |
+
print(prediction[3])
|
| 178 |
+
['th']
|
| 179 |
+
|
| 180 |
+
# Alternatively, use the utterance embedding extractor:
|
| 181 |
+
emb = language_id.encode_batch(signal)
|
| 182 |
+
print(emb.shape)
|
| 183 |
+
torch.Size([1, 1, 256])
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
#### Limitations and bias
|
| 187 |
+
|
| 188 |
+
Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are:
|
| 189 |
+
|
| 190 |
+
- Probably it's accuracy on smaller languages is quite limited
|
| 191 |
+
- Probably it works worse on female speech than male speech (because YouTube data includes much more male speech)
|
| 192 |
+
- Based on subjective experiments, it doesn't work well on speech with a foreign accent
|
| 193 |
+
- Probably it doesn't work well on children's speech and on persons with speech disorders
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
## Training data
|
| 197 |
+
|
| 198 |
+
The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/).
|
| 199 |
+
|
| 200 |
+
VoxLingua107 is a speech dataset for training spoken language identification models.
|
| 201 |
+
The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives.
|
| 202 |
+
|
| 203 |
+
VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours.
|
| 204 |
+
The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language.
|
| 205 |
+
|
| 206 |
+
## Training procedure
|
| 207 |
+
|
| 208 |
+
We used [SpeechBrain](https://github.com/speechbrain/speechbrain) to train the model.
|
| 209 |
+
Training recipe will be published soon.
|
| 210 |
+
|
| 211 |
+
## Evaluation results
|
| 212 |
+
|
| 213 |
+
Error rate: 7% on the development dataset
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
### BibTeX entry and citation info
|
| 217 |
+
|
| 218 |
+
```bibtex
|
| 219 |
+
@inproceedings{valk2021slt,
|
| 220 |
+
title={{VoxLingua107}: a Dataset for Spoken Language Recognition},
|
| 221 |
+
author={J{\"o}rgen Valk and Tanel Alum{\"a}e},
|
| 222 |
+
booktitle={Proc. IEEE SLT Workshop},
|
| 223 |
+
year={2021},
|
| 224 |
+
}
|
| 225 |
+
```
|
classifier.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a70783704ef67dcccd675185f5fb96652b4d0f01b66f67e16281a2c0b1d62bc5
|
| 3 |
+
size 110456
|
embedding_model.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e947c296c59f36de13db8b4e5c120dd4d75c2d90e0b6aab3aa86d23c38fc2a8d
|
| 3 |
+
size 84480206
|
hyperparams.yaml
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pretrained_path: TalTechNLP/voxlingua107-epaca-tdnn
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
# Feature parameters
|
| 5 |
+
n_mels: 60
|
| 6 |
+
left_frames: 0
|
| 7 |
+
right_frames: 0
|
| 8 |
+
deltas: false
|
| 9 |
+
|
| 10 |
+
# Number of speakers
|
| 11 |
+
out_n_neurons: 107
|
| 12 |
+
|
| 13 |
+
# Functions
|
| 14 |
+
compute_features: !new:speechbrain.lobes.features.Fbank
|
| 15 |
+
n_mels: 60
|
| 16 |
+
left_frames: 0
|
| 17 |
+
right_frames: 0
|
| 18 |
+
deltas: false
|
| 19 |
+
|
| 20 |
+
embedding_model: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
|
| 21 |
+
input_size: 60
|
| 22 |
+
channels: [1024, 1024, 1024, 1024, 3072]
|
| 23 |
+
kernel_sizes: [5, 3, 3, 3, 1]
|
| 24 |
+
dilations: [1, 2, 3, 4, 1]
|
| 25 |
+
attention_channels: 128
|
| 26 |
+
lin_neurons: 256
|
| 27 |
+
|
| 28 |
+
classifier: !new:speechbrain.lobes.models.ECAPA_TDNN.Classifier
|
| 29 |
+
input_size: 256
|
| 30 |
+
out_neurons: !ref <out_n_neurons>
|
| 31 |
+
|
| 32 |
+
mean_var_norm: !new:speechbrain.processing.features.InputNormalization
|
| 33 |
+
norm_type: sentence
|
| 34 |
+
std_norm: false
|
| 35 |
+
|
| 36 |
+
modules:
|
| 37 |
+
compute_features: !ref <compute_features>
|
| 38 |
+
mean_var_norm: !ref <mean_var_norm>
|
| 39 |
+
embedding_model: !ref <embedding_model>
|
| 40 |
+
classifier: !ref <classifier>
|
| 41 |
+
|
| 42 |
+
label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder
|
| 43 |
+
|
| 44 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
| 45 |
+
loadables:
|
| 46 |
+
embedding_model: !ref <embedding_model>
|
| 47 |
+
classifier: !ref <classifier>
|
| 48 |
+
label_encoder: !ref <label_encoder>
|
| 49 |
+
paths:
|
| 50 |
+
embedding_model: !ref <pretrained_path>/embedding_model.ckpt
|
| 51 |
+
classifier: !ref <pretrained_path>/classifier.ckpt
|
| 52 |
+
label_encoder: !ref <pretrained_path>/label_encoder.txt
|
label_encoder.txt
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'ab' => 0
|
| 2 |
+
'af' => 1
|
| 3 |
+
'am' => 2
|
| 4 |
+
'ar' => 3
|
| 5 |
+
'as' => 4
|
| 6 |
+
'az' => 5
|
| 7 |
+
'ba' => 6
|
| 8 |
+
'be' => 7
|
| 9 |
+
'bg' => 8
|
| 10 |
+
'bn' => 9
|
| 11 |
+
'bo' => 10
|
| 12 |
+
'br' => 11
|
| 13 |
+
'bs' => 12
|
| 14 |
+
'ca' => 13
|
| 15 |
+
'ceb' => 14
|
| 16 |
+
'cs' => 15
|
| 17 |
+
'cy' => 16
|
| 18 |
+
'da' => 17
|
| 19 |
+
'de' => 18
|
| 20 |
+
'el' => 19
|
| 21 |
+
'en' => 20
|
| 22 |
+
'eo' => 21
|
| 23 |
+
'es' => 22
|
| 24 |
+
'et' => 23
|
| 25 |
+
'eu' => 24
|
| 26 |
+
'fa' => 25
|
| 27 |
+
'fi' => 26
|
| 28 |
+
'fo' => 27
|
| 29 |
+
'fr' => 28
|
| 30 |
+
'gl' => 29
|
| 31 |
+
'gn' => 30
|
| 32 |
+
'gu' => 31
|
| 33 |
+
'gv' => 32
|
| 34 |
+
'ha' => 33
|
| 35 |
+
'haw' => 34
|
| 36 |
+
'hi' => 35
|
| 37 |
+
'hr' => 36
|
| 38 |
+
'ht' => 37
|
| 39 |
+
'hu' => 38
|
| 40 |
+
'hy' => 39
|
| 41 |
+
'ia' => 40
|
| 42 |
+
'id' => 41
|
| 43 |
+
'is' => 42
|
| 44 |
+
'it' => 43
|
| 45 |
+
'iw' => 44
|
| 46 |
+
'ja' => 45
|
| 47 |
+
'jw' => 46
|
| 48 |
+
'ka' => 47
|
| 49 |
+
'kk' => 48
|
| 50 |
+
'km' => 49
|
| 51 |
+
'kn' => 50
|
| 52 |
+
'ko' => 51
|
| 53 |
+
'la' => 52
|
| 54 |
+
'lb' => 53
|
| 55 |
+
'ln' => 54
|
| 56 |
+
'lo' => 55
|
| 57 |
+
'lt' => 56
|
| 58 |
+
'lv' => 57
|
| 59 |
+
'mg' => 58
|
| 60 |
+
'mi' => 59
|
| 61 |
+
'mk' => 60
|
| 62 |
+
'ml' => 61
|
| 63 |
+
'mn' => 62
|
| 64 |
+
'mr' => 63
|
| 65 |
+
'ms' => 64
|
| 66 |
+
'mt' => 65
|
| 67 |
+
'my' => 66
|
| 68 |
+
'ne' => 67
|
| 69 |
+
'nl' => 68
|
| 70 |
+
'nn' => 69
|
| 71 |
+
'no' => 70
|
| 72 |
+
'oc' => 71
|
| 73 |
+
'pa' => 72
|
| 74 |
+
'pl' => 73
|
| 75 |
+
'ps' => 74
|
| 76 |
+
'pt' => 75
|
| 77 |
+
'ro' => 76
|
| 78 |
+
'ru' => 77
|
| 79 |
+
'sa' => 78
|
| 80 |
+
'sco' => 79
|
| 81 |
+
'sd' => 80
|
| 82 |
+
'si' => 81
|
| 83 |
+
'sk' => 82
|
| 84 |
+
'sl' => 83
|
| 85 |
+
'sn' => 84
|
| 86 |
+
'so' => 85
|
| 87 |
+
'sq' => 86
|
| 88 |
+
'sr' => 87
|
| 89 |
+
'su' => 88
|
| 90 |
+
'sv' => 89
|
| 91 |
+
'sw' => 90
|
| 92 |
+
'ta' => 91
|
| 93 |
+
'te' => 92
|
| 94 |
+
'tg' => 93
|
| 95 |
+
'th' => 94
|
| 96 |
+
'tk' => 95
|
| 97 |
+
'tl' => 96
|
| 98 |
+
'tr' => 97
|
| 99 |
+
'tt' => 98
|
| 100 |
+
'uk' => 99
|
| 101 |
+
'ur' => 100
|
| 102 |
+
'uz' => 101
|
| 103 |
+
'vi' => 102
|
| 104 |
+
'war' => 103
|
| 105 |
+
'yi' => 104
|
| 106 |
+
'yo' => 105
|
| 107 |
+
'zh' => 106
|
| 108 |
+
================
|
| 109 |
+
'starting_index' => 0
|
normalizer.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99327453c38bd629b7479ea440b8efa59332d636555fa6738f1d3e360d6cad28
|
| 3 |
+
size 1153
|