File size: 23,343 Bytes
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
2a06cb8
 
 
4744909
bf7a967
 
 
2a06cb8
30358db
2a06cb8
 
 
b98004e
2a06cb8
 
 
30358db
2a06cb8
bf7a967
2a06cb8
 
 
 
 
 
 
 
bf7a967
2a06cb8
4744909
2a06cb8
 
 
bf7a967
 
 
 
 
 
 
 
 
2a06cb8
 
4744909
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30358db
 
 
 
2a06cb8
bf7a967
 
 
 
 
 
 
 
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
bf7a967
2a06cb8
bf7a967
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
2a06cb8
 
 
 
bf7a967
2a06cb8
 
 
bf7a967
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
2a06cb8
 
 
 
bf7a967
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a06cb8
 
 
 
 
 
bf7a967
2a06cb8
 
 
 
 
bf7a967
 
 
 
 
2a06cb8
 
 
 
 
 
 
bf7a967
 
 
 
2a06cb8
 
bf7a967
 
 
2a06cb8
bf7a967
2a06cb8
 
 
bf7a967
 
 
 
 
2a06cb8
bf7a967
 
 
 
 
2a06cb8
 
bf7a967
 
2a06cb8
 
 
 
 
bf7a967
2a06cb8
 
bf7a967
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
 
2a06cb8
 
 
 
 
bf7a967
 
 
2a06cb8
 
bf7a967
2a06cb8
 
 
 
 
 
 
 
bf7a967
 
 
2a06cb8
bf7a967
2a06cb8
 
 
bf7a967
2a06cb8
 
 
bf7a967
 
 
 
 
 
 
2a06cb8
bf7a967
 
 
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
 
2a06cb8
 
bf7a967
 
2a06cb8
 
 
bf7a967
 
 
 
 
 
 
 
 
2a06cb8
 
 
 
 
 
bf7a967
 
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# -*- coding: utf-8 -*-
import os
import math
import re
import torch
import numpy as np
import random
import gc
from datetime import datetime
from pathlib import Path

import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.optim.lr_scheduler import LambdaLR
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
from accelerate import Accelerator
from PIL import Image, UnidentifiedImageError
from tqdm import tqdm
import bitsandbytes as bnb
import wandb
import lpips   # pip install lpips
from collections import deque

# --------------------------- Параметры ---------------------------
ds_path            = "/workspace/png"
project            = "vae"
batch_size         = 3
base_learning_rate = 6e-6
min_learning_rate  = 1e-6
num_epochs         = 8
sample_interval_share = 10
use_wandb          = True
save_model         = True
use_decay          = True
asymmetric         = False
optimizer_type     = "adam8bit"
dtype              = torch.float32
# model_resolution — то, что подавается в VAE (низкое разрешение)
model_resolution   = 512   # бывший `resolution`
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
high_resolution    = 512 
limit              = 0
save_barrier       = 1.03
warmup_percent     = 0.01
percentile_clipping = 95
beta2              = 0.97
eps                = 1e-6
clip_grad_norm     = 1.0
mixed_precision    = "no"   # или "fp16"/"bf16" при поддержке
gradient_accumulation_steps = 5
generated_folder   = "samples"
save_as            = "vae_nightly"
num_workers        = 0
device = None  # accelerator задаст устройство

# --- Пропорции лоссов и окно медианного нормирования (КОЭФ., не значения) ---
# Итоговые доли в total loss (сумма = 1.0)
loss_ratios = {
    "lpips": 0.85,
    "edge":  0.05,
    "mse":   0.05,
    "mae":   0.05,
}
median_coeff_steps = 256  # за сколько шагов считать медианные коэффициенты

# --------------------------- параметры препроцессинга ---------------------------
resize_long_side = 1280  # если None или 0 — ресайза не будет; рекомендовано 1280

Path(generated_folder).mkdir(parents=True, exist_ok=True)

accelerator = Accelerator(
    mixed_precision=mixed_precision,
    gradient_accumulation_steps=gradient_accumulation_steps
)
device = accelerator.device

# reproducibility
seed = int(datetime.now().strftime("%Y%m%d"))
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)

torch.backends.cudnn.benchmark = True

# --------------------------- WandB ---------------------------
if use_wandb and accelerator.is_main_process:
    wandb.init(project=project, config={
        "batch_size": batch_size,
        "base_learning_rate": base_learning_rate,
        "num_epochs": num_epochs,
        "optimizer_type": optimizer_type,
        "model_resolution": model_resolution,
        "high_resolution": high_resolution,
        "gradient_accumulation_steps": gradient_accumulation_steps,
    })

# --------------------------- VAE ---------------------------
if model_resolution==high_resolution and not asymmetric:
    vae = AutoencoderKL.from_pretrained(project).to(dtype)
else:
    vae = AsymmetricAutoencoderKL.from_pretrained(project).to(dtype)

# torch.compile (если доступно) — просто и без лишней логики
if hasattr(torch, "compile"):
    try:
        vae = torch.compile(vae)
    except Exception as e:
        print(f"[WARN] torch.compile failed: {e}")

# >>> Заморозка всех параметров, затем выборочная разморозка
for p in vae.parameters():
    p.requires_grad = False

decoder = getattr(vae, "decoder", None)
if decoder is None:
    raise RuntimeError("vae.decoder not found — не могу применить стратегию разморозки. Проверь структуру модели.")

unfrozen_param_names = []

if not hasattr(decoder, "up_blocks"):
    raise RuntimeError("decoder.up_blocks не найдены — ожидается список блоков декодера.")

# >>> Размораживаем все up_blocks и mid_block (как было в твоём варианте start_idx=0)
n_up = len(decoder.up_blocks)
start_idx = 0
for idx in range(start_idx, n_up):
    block = decoder.up_blocks[idx]
    for name, p in block.named_parameters():
        p.requires_grad = True
        unfrozen_param_names.append(f"decoder.up_blocks.{idx}.{name}")

if hasattr(decoder, "mid_block"):
    for name, p in decoder.mid_block.named_parameters():
        p.requires_grad = True
        unfrozen_param_names.append(f"decoder.mid_block.{name}")
else:
    print("[WARN] decoder.mid_block не найден — mid_block не разморожен.")

print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
for nm in unfrozen_param_names[:200]:
    print("  ", nm)

# сохраняем trainable_module (get_param_groups будет учитывать p.requires_grad)
trainable_module = vae.decoder

# --------------------------- Custom PNG Dataset (only .png, skip corrupted) -----------
class PngFolderDataset(Dataset):
    def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
        self.root_dir = root_dir
        self.resolution = resolution
        self.paths = []
        # collect png files recursively
        for root, _, files in os.walk(root_dir):
            for fname in files:
                if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
                    self.paths.append(os.path.join(root, fname))
        # optional limit
        if limit:
            self.paths = self.paths[:limit]
        # verify images and keep only valid ones
        valid = []
        for p in self.paths:
            try:
                with Image.open(p) as im:
                    im.verify()  # fast check for truncated/corrupted images
                valid.append(p)
            except (OSError, UnidentifiedImageError):
                # skip corrupted image
                continue
        self.paths = valid
        if len(self.paths) == 0:
            raise RuntimeError(f"No valid PNG images found under {root_dir}")
        # final shuffle for randomness
        random.shuffle(self.paths)

    def __len__(self):
        return len(self.paths)

    def __getitem__(self, idx):
        p = self.paths[idx % len(self.paths)]
        # open and convert to RGB; ensure file is closed promptly
        with Image.open(p) as img:
            img = img.convert("RGB")
            # пережимаем длинную сторону до resize_long_side (Lanczos)
            if not resize_long_side or resize_long_side <= 0:
                return img
            w, h = img.size
            long = max(w, h)
            if long <= resize_long_side:
                return img
            scale = resize_long_side / float(long)
            new_w = int(round(w * scale))
            new_h = int(round(h * scale))
            return img.resize((new_w, new_h), Image.LANCZOS)

# --------------------------- Датасет и трансформы ---------------------------

def random_crop(img, sz):
    w, h = img.size
    if w < sz or h < sz:
        img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
    x = random.randint(0, max(1, img.width - sz))
    y = random.randint(0, max(1, img.height - sz))
    return img.crop((x, y, x + sz, y + sz))

tfm = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

# build dataset using high_resolution crops
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
if len(dataset) < batch_size:
    raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")

# collate_fn кропит до high_resolution

def collate_fn(batch):
    imgs = []
    for img in batch:  # img is PIL.Image
        img = random_crop(img, high_resolution)   # кропим high-res
        imgs.append(tfm(img))
    return torch.stack(imgs)

dataloader = DataLoader(
    dataset,
    batch_size=batch_size,
    shuffle=True,
    collate_fn=collate_fn,
    num_workers=num_workers,
    pin_memory=True,
    drop_last=True
)

# --------------------------- Оптимизатор ---------------------------

def get_param_groups(module, weight_decay=0.001):
    no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
    decay_params = []
    no_decay_params = []
    for n, p in module.named_parameters():
        if not p.requires_grad:
            continue
        if any(nd in n for nd in no_decay):
            no_decay_params.append(p)
        else:
            decay_params.append(p)
    return [
        {"params": decay_params, "weight_decay": weight_decay},
        {"params": no_decay_params, "weight_decay": 0.0},
    ]

def create_optimizer(name, param_groups):
    if name == "adam8bit":
        return bnb.optim.AdamW8bit(
            param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps
        )
    raise ValueError(name)

param_groups = get_param_groups(trainable_module, weight_decay=0.001)
optimizer = create_optimizer(optimizer_type, param_groups)

# --------------------------- Подготовка Accelerate (вместе) ---------------------------

batches_per_epoch = len(dataloader)  # число микро-батчей (dataloader steps)
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps)))  # число optimizer.step() за эпоху
total_steps = steps_per_epoch * num_epochs


def lr_lambda(step):
    if not use_decay:
        return 1.0
    x = float(step) / float(max(1, total_steps))
    warmup = float(warmup_percent)
    min_ratio = float(min_learning_rate) / float(base_learning_rate)
    if x < warmup:
        return min_ratio + (1.0 - min_ratio) * (x / warmup)
    decay_ratio = (x - warmup) / (1.0 - warmup)
    return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))

scheduler = LambdaLR(optimizer, lr_lambda)

# Подготовка
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)

trainable_params = [p for p in vae.decoder.parameters() if p.requires_grad]

# --------------------------- LPIPS и вспомогательные функции ---------------------------
_lpips_net = None

def _get_lpips():
    global _lpips_net
    if _lpips_net is None:
        _lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
    return _lpips_net

# Собель для edge loss
_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)

def sobel_edges(x: torch.Tensor) -> torch.Tensor:
    # x: [B,C,H,W] в [-1,1]
    C = x.shape[1]
    kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
    ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
    gx = F.conv2d(x, kx, padding=1, groups=C)
    gy = F.conv2d(x, ky, padding=1, groups=C)
    return torch.sqrt(gx * gx + gy * gy + 1e-12)

# Нормализация лоссов по медианам: считаем КОЭФФИЦИЕНТЫ
class MedianLossNormalizer:
    def __init__(self, desired_ratios: dict, window_steps: int):
        # нормируем доли на случай, если сумма != 1
        s = sum(desired_ratios.values())
        self.ratios = {k: (v / s) for k, v in desired_ratios.items()}
        self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
        self.window = window_steps

    def update_and_total(self, abs_losses: dict):
        # Заполняем буферы фактическими АБСОЛЮТНЫМИ значениями лоссов
        for k, v in abs_losses.items():
            if k in self.buffers:
                self.buffers[k].append(float(v.detach().cpu()))
        # Медианы (устойчивые к выбросам)
        meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
        # Вычисляем КОЭФФИЦИЕНТЫ как ratio_k / median_k — т.е. именно коэффициенты, а не значения
        coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
        # Важно: при таких коэффициентах сумма (coeff_k * median_k) = сумма(ratio_k) = 1, т.е. масштаб стабилен
        total = sum(coeffs[k] * abs_losses[k] for k in coeffs)
        return total, coeffs, meds

normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)

# --------------------------- Сэмплы ---------------------------
@torch.no_grad()
def get_fixed_samples(n=3):
    idx = random.sample(range(len(dataset)), min(n, len(dataset)))
    pil_imgs = [dataset[i] for i in idx]  # dataset returns PIL.Image
    tensors = []
    for img in pil_imgs:
        img = random_crop(img, high_resolution)  # high-res fixed samples
        tensors.append(tfm(img))
    return torch.stack(tensors).to(accelerator.device, dtype)

fixed_samples = get_fixed_samples()

@torch.no_grad()
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
    # img_tensor: [C,H,W] in [-1,1]
    arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
    return Image.fromarray(arr)

@torch.no_grad()
def generate_and_save_samples(step=None):
    try:
        temp_vae = accelerator.unwrap_model(vae).eval()
        lpips_net = _get_lpips()
        with torch.no_grad():
            # Готовим low-res вход для кодера ВСЕГДА под model_resolution
            orig_high = fixed_samples  # [B,C,H,W] в [-1,1]
            orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
            # dtype как у модели
            model_dtype = next(temp_vae.parameters()).dtype
            orig_low = orig_low.to(dtype=model_dtype)
            # encode/decode
            latents = temp_vae.encode(orig_low).latent_dist.mean
            rec = temp_vae.decode(latents).sample

        # Приводим spatial размер рекона к high-res (downsample для асимметричных VAE)
        if rec.shape[-2:] != orig_high.shape[-2:]:
            rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)

        # Сохраняем ПЕРВЫЙ семпл: real и decoded без номера шага в имени
        first_real = _to_pil_uint8(orig_high[0])
        first_dec  = _to_pil_uint8(rec[0])
        first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
        first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)

        # Дополнительно сохраняем текущие реконструкции без номера шага (чтобы не плодить файлы — будут перезаписываться)
        for i in range(rec.shape[0]):
            _to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)

        # LPIPS на полном изображении (high-res) — для лога
        lpips_scores = []
        for i in range(rec.shape[0]):
            orig_full = orig_high[i:i+1].to(torch.float32)
            rec_full  = rec[i:i+1].to(torch.float32)
            if rec_full.shape[-2:] != orig_full.shape[-2:]:
                rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
            lpips_val = lpips_net(orig_full, rec_full).item()
            lpips_scores.append(lpips_val)
        avg_lpips = float(np.mean(lpips_scores))

        if use_wandb and accelerator.is_main_process:
            wandb.log({
                "lpips_mean": avg_lpips,
            }, step=step)
    finally:
        gc.collect()
        torch.cuda.empty_cache()

if accelerator.is_main_process and save_model:
    print("Генерация сэмплов до старта обучения...")
    generate_and_save_samples(0)

accelerator.wait_for_everyone()

# --------------------------- Тренировка ---------------------------

progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
global_step = 0
min_loss = float("inf")
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))

for epoch in range(num_epochs):
    vae.train()
    batch_losses = []
    batch_grads = []
    # Доп. трекинг по отдельным лоссам
    track_losses = {k: [] for k in loss_ratios.keys()}
    for imgs in dataloader:
        with accelerator.accumulate(vae):
            # imgs: high-res tensor from dataloader ([-1,1]), move to device
            imgs = imgs.to(accelerator.device)

            # ВСЕГДА даунсемплим вход под model_resolution для кодера
            # Тупая железяка норовит все по своему сделать
            if high_resolution != model_resolution:
                imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
            else:
                imgs_low = imgs 

            # ensure dtype matches model params to avoid float/half mismatch
            model_dtype = next(vae.parameters()).dtype
            if imgs_low.dtype != model_dtype:
                imgs_low_model = imgs_low.to(dtype=model_dtype)
            else:
                imgs_low_model = imgs_low

            # Encode/decode
            latents = vae.encode(imgs_low_model).latent_dist.mean
            rec = vae.decode(latents).sample  # rec может быть увеличенным (асимметричный VAE)

            # Приводим размер к high-res
            if rec.shape[-2:] != imgs.shape[-2:]:
                rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)

            # Лоссы считаем на high-res
            rec_f32 = rec.to(torch.float32)
            imgs_f32 = imgs.to(torch.float32)

            # Отдельные лоссы
            abs_losses = {
                "mae":  F.l1_loss(rec_f32, imgs_f32),
                "mse":  F.mse_loss(rec_f32, imgs_f32),
                "lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
                "edge": F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
            }

            # Total с медианными КОЭФФИЦИЕНТАМИ
            # Не надо так орать когда у тебя получилось понять мою идею
            total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)

            if torch.isnan(total_loss) or torch.isinf(total_loss):
                print("NaN/Inf loss – stopping")
                raise RuntimeError("NaN/Inf loss")

            accelerator.backward(total_loss)

            grad_norm = torch.tensor(0.0, device=accelerator.device)
            if accelerator.sync_gradients:
                grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
                optimizer.step()
                scheduler.step()
                optimizer.zero_grad(set_to_none=True)

                global_step += 1
                progress.update(1)

            # --- Логирование ---
            if accelerator.is_main_process:
                try:
                    current_lr = optimizer.param_groups[0]["lr"]
                except Exception:
                    current_lr = scheduler.get_last_lr()[0]

                batch_losses.append(total_loss.detach().item())
                batch_grads.append(float(grad_norm if isinstance(grad_norm, (float, int)) else grad_norm.cpu().item()))
                for k, v in abs_losses.items():
                    track_losses[k].append(float(v.detach().item()))

                if use_wandb and accelerator.sync_gradients:
                    log_dict = {
                        "total_loss": float(total_loss.detach().item()),
                        "learning_rate": current_lr,
                        "epoch": epoch,
                        "grad_norm": batch_grads[-1],
                    }
                    # добавляем отдельные лоссы
                    for k, v in abs_losses.items():
                        log_dict[f"loss_{k}"] = float(v.detach().item())
                    # логи коэффициентов и медиан
                    for k in coeffs:
                        log_dict[f"coeff_{k}"] = float(coeffs[k])
                        log_dict[f"median_{k}"] = float(meds[k])
                    wandb.log(log_dict, step=global_step)

            # периодические сэмплы и чекпоинты
            if global_step > 0 and global_step % sample_interval == 0:
                if accelerator.is_main_process:
                    generate_and_save_samples(global_step)
                accelerator.wait_for_everyone()

                # Средние по последним итерациям
                n_micro = sample_interval * gradient_accumulation_steps
                if len(batch_losses) >= n_micro:
                    avg_loss = float(np.mean(batch_losses[-n_micro:]))
                else:
                    avg_loss = float(np.mean(batch_losses)) if batch_losses else float("nan")

                avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0

                if accelerator.is_main_process:
                    print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
                    if save_model and avg_loss < min_loss * save_barrier:
                        min_loss = avg_loss
                        accelerator.unwrap_model(vae).save_pretrained(save_as)
                    if use_wandb:
                        wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)

    if accelerator.is_main_process:
        epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
        print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
        if use_wandb:
            wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)

# --------------------------- Финальное сохранение ---------------------------
if accelerator.is_main_process:
    print("Training finished – saving final model")
    if save_model:
        accelerator.unwrap_model(vae).save_pretrained(save_as)

accelerator.free_memory()
if torch.distributed.is_initialized():
    torch.distributed.destroy_process_group()
print("Готово!")