File size: 23,343 Bytes
2a06cb8 bf7a967 2a06cb8 4744909 bf7a967 2a06cb8 30358db 2a06cb8 b98004e 2a06cb8 30358db 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 4744909 2a06cb8 bf7a967 2a06cb8 4744909 2a06cb8 30358db 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 2a06cb8 bf7a967 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
# -*- coding: utf-8 -*-
import os
import math
import re
import torch
import numpy as np
import random
import gc
from datetime import datetime
from pathlib import Path
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.optim.lr_scheduler import LambdaLR
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
from accelerate import Accelerator
from PIL import Image, UnidentifiedImageError
from tqdm import tqdm
import bitsandbytes as bnb
import wandb
import lpips # pip install lpips
from collections import deque
# --------------------------- Параметры ---------------------------
ds_path = "/workspace/png"
project = "vae"
batch_size = 3
base_learning_rate = 6e-6
min_learning_rate = 1e-6
num_epochs = 8
sample_interval_share = 10
use_wandb = True
save_model = True
use_decay = True
asymmetric = False
optimizer_type = "adam8bit"
dtype = torch.float32
# model_resolution — то, что подавается в VAE (низкое разрешение)
model_resolution = 512 # бывший `resolution`
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
high_resolution = 512
limit = 0
save_barrier = 1.03
warmup_percent = 0.01
percentile_clipping = 95
beta2 = 0.97
eps = 1e-6
clip_grad_norm = 1.0
mixed_precision = "no" # или "fp16"/"bf16" при поддержке
gradient_accumulation_steps = 5
generated_folder = "samples"
save_as = "vae_nightly"
num_workers = 0
device = None # accelerator задаст устройство
# --- Пропорции лоссов и окно медианного нормирования (КОЭФ., не значения) ---
# Итоговые доли в total loss (сумма = 1.0)
loss_ratios = {
"lpips": 0.85,
"edge": 0.05,
"mse": 0.05,
"mae": 0.05,
}
median_coeff_steps = 256 # за сколько шагов считать медианные коэффициенты
# --------------------------- параметры препроцессинга ---------------------------
resize_long_side = 1280 # если None или 0 — ресайза не будет; рекомендовано 1280
Path(generated_folder).mkdir(parents=True, exist_ok=True)
accelerator = Accelerator(
mixed_precision=mixed_precision,
gradient_accumulation_steps=gradient_accumulation_steps
)
device = accelerator.device
# reproducibility
seed = int(datetime.now().strftime("%Y%m%d"))
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = True
# --------------------------- WandB ---------------------------
if use_wandb and accelerator.is_main_process:
wandb.init(project=project, config={
"batch_size": batch_size,
"base_learning_rate": base_learning_rate,
"num_epochs": num_epochs,
"optimizer_type": optimizer_type,
"model_resolution": model_resolution,
"high_resolution": high_resolution,
"gradient_accumulation_steps": gradient_accumulation_steps,
})
# --------------------------- VAE ---------------------------
if model_resolution==high_resolution and not asymmetric:
vae = AutoencoderKL.from_pretrained(project).to(dtype)
else:
vae = AsymmetricAutoencoderKL.from_pretrained(project).to(dtype)
# torch.compile (если доступно) — просто и без лишней логики
if hasattr(torch, "compile"):
try:
vae = torch.compile(vae)
except Exception as e:
print(f"[WARN] torch.compile failed: {e}")
# >>> Заморозка всех параметров, затем выборочная разморозка
for p in vae.parameters():
p.requires_grad = False
decoder = getattr(vae, "decoder", None)
if decoder is None:
raise RuntimeError("vae.decoder not found — не могу применить стратегию разморозки. Проверь структуру модели.")
unfrozen_param_names = []
if not hasattr(decoder, "up_blocks"):
raise RuntimeError("decoder.up_blocks не найдены — ожидается список блоков декодера.")
# >>> Размораживаем все up_blocks и mid_block (как было в твоём варианте start_idx=0)
n_up = len(decoder.up_blocks)
start_idx = 0
for idx in range(start_idx, n_up):
block = decoder.up_blocks[idx]
for name, p in block.named_parameters():
p.requires_grad = True
unfrozen_param_names.append(f"decoder.up_blocks.{idx}.{name}")
if hasattr(decoder, "mid_block"):
for name, p in decoder.mid_block.named_parameters():
p.requires_grad = True
unfrozen_param_names.append(f"decoder.mid_block.{name}")
else:
print("[WARN] decoder.mid_block не найден — mid_block не разморожен.")
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
for nm in unfrozen_param_names[:200]:
print(" ", nm)
# сохраняем trainable_module (get_param_groups будет учитывать p.requires_grad)
trainable_module = vae.decoder
# --------------------------- Custom PNG Dataset (only .png, skip corrupted) -----------
class PngFolderDataset(Dataset):
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
self.root_dir = root_dir
self.resolution = resolution
self.paths = []
# collect png files recursively
for root, _, files in os.walk(root_dir):
for fname in files:
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
self.paths.append(os.path.join(root, fname))
# optional limit
if limit:
self.paths = self.paths[:limit]
# verify images and keep only valid ones
valid = []
for p in self.paths:
try:
with Image.open(p) as im:
im.verify() # fast check for truncated/corrupted images
valid.append(p)
except (OSError, UnidentifiedImageError):
# skip corrupted image
continue
self.paths = valid
if len(self.paths) == 0:
raise RuntimeError(f"No valid PNG images found under {root_dir}")
# final shuffle for randomness
random.shuffle(self.paths)
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
p = self.paths[idx % len(self.paths)]
# open and convert to RGB; ensure file is closed promptly
with Image.open(p) as img:
img = img.convert("RGB")
# пережимаем длинную сторону до resize_long_side (Lanczos)
if not resize_long_side or resize_long_side <= 0:
return img
w, h = img.size
long = max(w, h)
if long <= resize_long_side:
return img
scale = resize_long_side / float(long)
new_w = int(round(w * scale))
new_h = int(round(h * scale))
return img.resize((new_w, new_h), Image.LANCZOS)
# --------------------------- Датасет и трансформы ---------------------------
def random_crop(img, sz):
w, h = img.size
if w < sz or h < sz:
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
x = random.randint(0, max(1, img.width - sz))
y = random.randint(0, max(1, img.height - sz))
return img.crop((x, y, x + sz, y + sz))
tfm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# build dataset using high_resolution crops
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
if len(dataset) < batch_size:
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
# collate_fn кропит до high_resolution
def collate_fn(batch):
imgs = []
for img in batch: # img is PIL.Image
img = random_crop(img, high_resolution) # кропим high-res
imgs.append(tfm(img))
return torch.stack(imgs)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
drop_last=True
)
# --------------------------- Оптимизатор ---------------------------
def get_param_groups(module, weight_decay=0.001):
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
decay_params = []
no_decay_params = []
for n, p in module.named_parameters():
if not p.requires_grad:
continue
if any(nd in n for nd in no_decay):
no_decay_params.append(p)
else:
decay_params.append(p)
return [
{"params": decay_params, "weight_decay": weight_decay},
{"params": no_decay_params, "weight_decay": 0.0},
]
def create_optimizer(name, param_groups):
if name == "adam8bit":
return bnb.optim.AdamW8bit(
param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps
)
raise ValueError(name)
param_groups = get_param_groups(trainable_module, weight_decay=0.001)
optimizer = create_optimizer(optimizer_type, param_groups)
# --------------------------- Подготовка Accelerate (вместе) ---------------------------
batches_per_epoch = len(dataloader) # число микро-батчей (dataloader steps)
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps))) # число optimizer.step() за эпоху
total_steps = steps_per_epoch * num_epochs
def lr_lambda(step):
if not use_decay:
return 1.0
x = float(step) / float(max(1, total_steps))
warmup = float(warmup_percent)
min_ratio = float(min_learning_rate) / float(base_learning_rate)
if x < warmup:
return min_ratio + (1.0 - min_ratio) * (x / warmup)
decay_ratio = (x - warmup) / (1.0 - warmup)
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
scheduler = LambdaLR(optimizer, lr_lambda)
# Подготовка
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
trainable_params = [p for p in vae.decoder.parameters() if p.requires_grad]
# --------------------------- LPIPS и вспомогательные функции ---------------------------
_lpips_net = None
def _get_lpips():
global _lpips_net
if _lpips_net is None:
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
return _lpips_net
# Собель для edge loss
_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
# x: [B,C,H,W] в [-1,1]
C = x.shape[1]
kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
gx = F.conv2d(x, kx, padding=1, groups=C)
gy = F.conv2d(x, ky, padding=1, groups=C)
return torch.sqrt(gx * gx + gy * gy + 1e-12)
# Нормализация лоссов по медианам: считаем КОЭФФИЦИЕНТЫ
class MedianLossNormalizer:
def __init__(self, desired_ratios: dict, window_steps: int):
# нормируем доли на случай, если сумма != 1
s = sum(desired_ratios.values())
self.ratios = {k: (v / s) for k, v in desired_ratios.items()}
self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
self.window = window_steps
def update_and_total(self, abs_losses: dict):
# Заполняем буферы фактическими АБСОЛЮТНЫМИ значениями лоссов
for k, v in abs_losses.items():
if k in self.buffers:
self.buffers[k].append(float(v.detach().cpu()))
# Медианы (устойчивые к выбросам)
meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
# Вычисляем КОЭФФИЦИЕНТЫ как ratio_k / median_k — т.е. именно коэффициенты, а не значения
coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
# Важно: при таких коэффициентах сумма (coeff_k * median_k) = сумма(ratio_k) = 1, т.е. масштаб стабилен
total = sum(coeffs[k] * abs_losses[k] for k in coeffs)
return total, coeffs, meds
normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)
# --------------------------- Сэмплы ---------------------------
@torch.no_grad()
def get_fixed_samples(n=3):
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
pil_imgs = [dataset[i] for i in idx] # dataset returns PIL.Image
tensors = []
for img in pil_imgs:
img = random_crop(img, high_resolution) # high-res fixed samples
tensors.append(tfm(img))
return torch.stack(tensors).to(accelerator.device, dtype)
fixed_samples = get_fixed_samples()
@torch.no_grad()
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
# img_tensor: [C,H,W] in [-1,1]
arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
return Image.fromarray(arr)
@torch.no_grad()
def generate_and_save_samples(step=None):
try:
temp_vae = accelerator.unwrap_model(vae).eval()
lpips_net = _get_lpips()
with torch.no_grad():
# Готовим low-res вход для кодера ВСЕГДА под model_resolution
orig_high = fixed_samples # [B,C,H,W] в [-1,1]
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
# dtype как у модели
model_dtype = next(temp_vae.parameters()).dtype
orig_low = orig_low.to(dtype=model_dtype)
# encode/decode
latents = temp_vae.encode(orig_low).latent_dist.mean
rec = temp_vae.decode(latents).sample
# Приводим spatial размер рекона к high-res (downsample для асимметричных VAE)
if rec.shape[-2:] != orig_high.shape[-2:]:
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
# Сохраняем ПЕРВЫЙ семпл: real и decoded без номера шага в имени
first_real = _to_pil_uint8(orig_high[0])
first_dec = _to_pil_uint8(rec[0])
first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)
# Дополнительно сохраняем текущие реконструкции без номера шага (чтобы не плодить файлы — будут перезаписываться)
for i in range(rec.shape[0]):
_to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)
# LPIPS на полном изображении (high-res) — для лога
lpips_scores = []
for i in range(rec.shape[0]):
orig_full = orig_high[i:i+1].to(torch.float32)
rec_full = rec[i:i+1].to(torch.float32)
if rec_full.shape[-2:] != orig_full.shape[-2:]:
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
lpips_val = lpips_net(orig_full, rec_full).item()
lpips_scores.append(lpips_val)
avg_lpips = float(np.mean(lpips_scores))
if use_wandb and accelerator.is_main_process:
wandb.log({
"lpips_mean": avg_lpips,
}, step=step)
finally:
gc.collect()
torch.cuda.empty_cache()
if accelerator.is_main_process and save_model:
print("Генерация сэмплов до старта обучения...")
generate_and_save_samples(0)
accelerator.wait_for_everyone()
# --------------------------- Тренировка ---------------------------
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
global_step = 0
min_loss = float("inf")
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
for epoch in range(num_epochs):
vae.train()
batch_losses = []
batch_grads = []
# Доп. трекинг по отдельным лоссам
track_losses = {k: [] for k in loss_ratios.keys()}
for imgs in dataloader:
with accelerator.accumulate(vae):
# imgs: high-res tensor from dataloader ([-1,1]), move to device
imgs = imgs.to(accelerator.device)
# ВСЕГДА даунсемплим вход под model_resolution для кодера
# Тупая железяка норовит все по своему сделать
if high_resolution != model_resolution:
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
else:
imgs_low = imgs
# ensure dtype matches model params to avoid float/half mismatch
model_dtype = next(vae.parameters()).dtype
if imgs_low.dtype != model_dtype:
imgs_low_model = imgs_low.to(dtype=model_dtype)
else:
imgs_low_model = imgs_low
# Encode/decode
latents = vae.encode(imgs_low_model).latent_dist.mean
rec = vae.decode(latents).sample # rec может быть увеличенным (асимметричный VAE)
# Приводим размер к high-res
if rec.shape[-2:] != imgs.shape[-2:]:
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
# Лоссы считаем на high-res
rec_f32 = rec.to(torch.float32)
imgs_f32 = imgs.to(torch.float32)
# Отдельные лоссы
abs_losses = {
"mae": F.l1_loss(rec_f32, imgs_f32),
"mse": F.mse_loss(rec_f32, imgs_f32),
"lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
"edge": F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
}
# Total с медианными КОЭФФИЦИЕНТАМИ
# Не надо так орать когда у тебя получилось понять мою идею
total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)
if torch.isnan(total_loss) or torch.isinf(total_loss):
print("NaN/Inf loss – stopping")
raise RuntimeError("NaN/Inf loss")
accelerator.backward(total_loss)
grad_norm = torch.tensor(0.0, device=accelerator.device)
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad(set_to_none=True)
global_step += 1
progress.update(1)
# --- Логирование ---
if accelerator.is_main_process:
try:
current_lr = optimizer.param_groups[0]["lr"]
except Exception:
current_lr = scheduler.get_last_lr()[0]
batch_losses.append(total_loss.detach().item())
batch_grads.append(float(grad_norm if isinstance(grad_norm, (float, int)) else grad_norm.cpu().item()))
for k, v in abs_losses.items():
track_losses[k].append(float(v.detach().item()))
if use_wandb and accelerator.sync_gradients:
log_dict = {
"total_loss": float(total_loss.detach().item()),
"learning_rate": current_lr,
"epoch": epoch,
"grad_norm": batch_grads[-1],
}
# добавляем отдельные лоссы
for k, v in abs_losses.items():
log_dict[f"loss_{k}"] = float(v.detach().item())
# логи коэффициентов и медиан
for k in coeffs:
log_dict[f"coeff_{k}"] = float(coeffs[k])
log_dict[f"median_{k}"] = float(meds[k])
wandb.log(log_dict, step=global_step)
# периодические сэмплы и чекпоинты
if global_step > 0 and global_step % sample_interval == 0:
if accelerator.is_main_process:
generate_and_save_samples(global_step)
accelerator.wait_for_everyone()
# Средние по последним итерациям
n_micro = sample_interval * gradient_accumulation_steps
if len(batch_losses) >= n_micro:
avg_loss = float(np.mean(batch_losses[-n_micro:]))
else:
avg_loss = float(np.mean(batch_losses)) if batch_losses else float("nan")
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
if accelerator.is_main_process:
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
if save_model and avg_loss < min_loss * save_barrier:
min_loss = avg_loss
accelerator.unwrap_model(vae).save_pretrained(save_as)
if use_wandb:
wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)
if accelerator.is_main_process:
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
if use_wandb:
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
# --------------------------- Финальное сохранение ---------------------------
if accelerator.is_main_process:
print("Training finished – saving final model")
if save_model:
accelerator.unwrap_model(vae).save_pretrained(save_as)
accelerator.free_memory()
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()
print("Готово!")
|