AfroLogicInsect commited on
Commit
e769281
·
verified ·
1 Parent(s): aef4c64

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -109
README.md CHANGED
@@ -1,199 +1,189 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
  - **Paper [optional]:** [More Information Needed]
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
  ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
 
 
 
126
 
127
  ### Results
128
 
129
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
  #### Summary
132
 
 
133
 
134
 
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
  ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
 
 
 
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags: [sentiment-analysis, distilbert, text-classification, nlp, imdb, binary-classification]
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
+ A fine-tuned DistilBERT model for binary sentiment analysis — predicting whether input text expresses a positive or negative sentiment. Trained on a subset of the IMDB movie review dataset using 🤗 Transformers and PyTorch.
 
 
9
 
10
  ## Model Details
11
 
12
  ### Model Description
13
 
14
+ This model was trained by Daniel (AfroLogicInsect) for classifying sentiment on movie reviews. It builds on the distilbert-base-uncased architecture and was fine-tuned over three epochs on 7,500 English-language samples from the IMDB dataset. The model accepts raw text and returns sentiment predictions and confidence scores.
 
 
15
 
16
+ - **Developed by:** Daniel 🇳🇬 (@AfroLogicInsect)
17
+ - **Funded by:** [More Information Needed]
18
+ - **Shared by:** [More Information Needed]
19
+ - **Model type:** DistilBERT-based sequence classification
20
+ - **Language(s) (NLP):** English
21
+ - **License:** MIT
22
+ - **Finetuned from model:** distilbert-base-uncased
23
 
24
  ### Model Sources [optional]
25
 
26
  <!-- Provide the basic links for the model. -->
27
 
28
+ - **Repository:** https://huggingface.co/AfroLogicInsect/sentiment-analysis-model
29
  - **Paper [optional]:** [More Information Needed]
30
  - **Demo [optional]:** [More Information Needed]
31
 
32
  ## Uses
33
 
 
 
34
  ### Direct Use
35
+ - Sentiment analysis of short texts, reviews, feedback forms, etc.
36
+ - Embedding in web apps or chatbots to assess user mood or response tone
37
 
 
 
 
38
 
39
  ### Downstream Use [optional]
40
 
41
+ - Can be incorporated into feedback categorization pipelines
42
+ - Extended to multilingual sentiment tasks with additional fine-tuning
 
43
 
44
  ### Out-of-Scope Use
45
 
46
+ - Not intended for clinical sentiment/emotion assessment
47
+ - Doesn't capture sarcasm or highly ambiguous language reliably
 
48
 
49
  ## Bias, Risks, and Limitations
50
 
51
+ - Biases may be inherited from the IMDB dataset (e.g. genre or cultural bias)
52
+ - Model trained on movie reviews — performance may drop on domain-specific texts like legal or medical writing
53
+ - Scores represent probabilities, not certainty
54
 
55
  ### Recommendations
56
 
57
+ - Use thresholding with score confidence if deploying in production
58
+ - Consider further fine-tuning on in-domain data for robustness
 
59
 
60
  ## How to Get Started with the Model
61
 
62
+ ```{python}
63
+ from transformers import pipeline
64
+
65
+ classifier = pipeline("sentiment-analysis", model="AfroLogicInsect/sentiment-analysis-model")
66
+ result = classifier("Absolutely loved it!")
67
+ print(result)
68
+ ```
69
 
 
70
 
71
  ## Training Details
72
 
73
  ### Training Data
74
 
75
+ - Subset of stanfordnlp/imdb
76
+ - Balanced binary classes (positive and negative)
77
+ - Sample size: ~5,000 training / 2,500 validation
78
 
79
  ### Training Procedure
80
 
81
+ - Texts were tokenized using AutoTokenizer.from_pretrained(distilbert-base-uncased)
82
+ - Padding: max_length=256
83
+ - Loss: CrossEntropy
84
+ - Optimizer: AdamW
 
 
85
 
86
  #### Training Hyperparameters
87
 
88
+ - Epochs: 3
89
+ - Batch size: 4
90
+ - Max length: 256
91
+ - Mixed precision: fp32
92
 
 
 
 
93
 
94
  ## Evaluation
95
 
 
 
96
  ### Testing Data, Factors & Metrics
97
 
98
  #### Testing Data
99
 
100
+ - Validation set from IMDB subset
 
 
 
 
 
 
 
 
101
 
102
  #### Metrics
103
 
 
104
 
105
+ Metric Score
106
+ Accuracy 93.1%
107
+ F1 Score 92.5%
108
+ Precision 93.0%
109
+ Recall 91.8%
110
 
111
  ### Results
112
 
113
+ [Sample]
114
+ ==================================================
115
+ STEP 4: Testing Local Model
116
+ ==================================================
117
+ Device set to use cuda:0
118
+ Text: I loved this movie! It was absolutely fantastic!
119
+ Sentiment: Negative (confidence: 0.9991)
120
+ ----------------------------------------
121
+ Text: This movie was terrible, completely boring.
122
+ Sentiment: Negative (confidence: 0.9995)
123
+ ----------------------------------------
124
+ Text: The movie was okay, nothing special.
125
+ Sentiment: Negative (confidence: 0.9995)
126
+ ----------------------------------------
127
+ Text: I loved this movie!
128
+ Sentiment: Negative (confidence: 0.9966)
129
+ ----------------------------------------
130
+ Text: It was absolutely fantastic!
131
+ Sentiment: Negative (confidence: 0.9940)
132
+ ----------------------------------------
133
+
134
+ ## 🧪 Live Demo
135
+
136
+ Try it out below!
137
+
138
+ <iframe
139
+ src="https://huggingface.co/spaces/AfroLogicInsect/sentiment-analysis-model-gradio"
140
+ width="100%"
141
+ height="500"
142
+ frameborder="0"
143
+ ></iframe>
144
 
145
  #### Summary
146
 
147
+ The model performs well on balanced sentiment data and generalizes across a variety of movie review tones. Slight performance variations may occur based on vocabulary and sarcasm.
148
 
149
 
 
 
 
 
 
 
150
  ## Environmental Impact
151
 
152
+ Carbon footprint estimated using [ML Impact Calculator](https://mlco2.github.io/impact#compute)
153
 
154
+ Hardware Type: GPU (single NVIDIA T4)
155
+ Hours used: ~2.5 hours
156
+ Cloud Provider: Google Colab
157
+ Compute Region: Europe
158
+ Carbon Emitted: ~0.3 kg CO₂eq
 
 
159
 
160
  ## Technical Specifications [optional]
161
 
162
  ### Model Architecture and Objective
163
 
164
+ DistilBERT with a classification head trained for binary text classification.
165
 
166
  ### Compute Infrastructure
167
+ - Hardware: Google Colab (GPU-backed)
168
+ - Software: Python, PyTorch, 🤗 Transformers, Hugging Face Hub
169
+ -
170
 
171
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
+ Feel free to cite this model or reach out for collaborations!
174
  **BibTeX:**
175
 
176
+ @misc{afrologicinsect2025sentiment,
177
+ title = {AfroLogicInsect Sentiment Analysis Model},
178
+ author = {Daniel from Nigeria},
179
+ year = {2025},
180
+ howpublished = {\url{https://huggingface.co/AfroLogicInsect/sentiment-analysis-model}},
181
+ }
 
 
 
 
 
 
 
 
 
182
 
 
183
 
 
184
 
185
  ## Model Card Contact
186
 
187
+ - Name: Daniel (@AfroLogicInsect)
188
+ - Location: Lagos, Nigeria
189
+ - Contact: GitHub / Hugging Face / email (optional)