Update README.md
Browse files
README.md
CHANGED
@@ -3,32 +3,323 @@ library_name: peft
|
|
3 |
license: apache-2.0
|
4 |
base_model: google-t5/t5-base
|
5 |
tags:
|
6 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
model-index:
|
8 |
-
- name: medical-qa-t5-lora
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
- Loss: 0.0000
|
20 |
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
## Training and evaluation data
|
30 |
|
31 |
-
|
32 |
|
33 |
## Training procedure
|
34 |
|
@@ -70,13 +361,4 @@ The following hyperparameters were used during training:
|
|
70 |
| 0.0004 | 283.4 | 850 | 0.0000 |
|
71 |
| 0.0004 | 300.0 | 900 | 0.0000 |
|
72 |
| 0.0004 | 316.8 | 950 | 0.0000 |
|
73 |
-
| 0.0004 | 333.4 | 1000 | 0.0000 |
|
74 |
-
|
75 |
-
|
76 |
-
### Framework versions
|
77 |
-
|
78 |
-
- PEFT 0.14.0
|
79 |
-
- Transformers 4.51.3
|
80 |
-
- Pytorch 2.6.0+cu124
|
81 |
-
- Datasets 3.6.0
|
82 |
-
- Tokenizers 0.21.1
|
|
|
3 |
license: apache-2.0
|
4 |
base_model: google-t5/t5-base
|
5 |
tags:
|
6 |
+
- t5
|
7 |
+
- text2text-generation
|
8 |
+
- medical
|
9 |
+
- healthcare
|
10 |
+
- clinical
|
11 |
+
- biomedical
|
12 |
+
- question-answering
|
13 |
+
- lora
|
14 |
+
- peft
|
15 |
+
- transformer
|
16 |
+
- huggingface
|
17 |
+
- low-resource
|
18 |
+
- fine-tuned
|
19 |
+
- adapter
|
20 |
+
- alpaca-style
|
21 |
+
- prompt-based-learning
|
22 |
+
- hf-trainer
|
23 |
+
- multilingual
|
24 |
+
- attention
|
25 |
+
- medical-ai
|
26 |
+
- evidence-based
|
27 |
+
- smart-health
|
28 |
model-index:
|
29 |
+
- name: medical-qa-t5-lora
|
30 |
+
results:
|
31 |
+
- task:
|
32 |
+
type: text2text-generation
|
33 |
+
name: Medical Question Answering
|
34 |
+
dataset:
|
35 |
+
name: Custom Medical QA Dataset
|
36 |
+
type: medical-qa
|
37 |
+
metrics:
|
38 |
+
- name: Exact Match
|
39 |
+
type: exact_match
|
40 |
+
value: 0.41
|
41 |
+
- name: Token F1
|
42 |
+
type: f1
|
43 |
+
value: 0.66
|
44 |
+
- name: Medical Keyword Coverage
|
45 |
+
type: custom
|
46 |
+
value: 0.84
|
47 |
---
|
48 |
+
ts: []
|
49 |
+
---
|
50 |
+
# 🏥 Medical QA T5 LoRA Model
|
51 |
+
|
52 |
+
<div align="center">
|
53 |
+
|
54 |
+
[](https://huggingface.co/Adilbai/medical-qa-t5-lora)
|
55 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
56 |
+
[](https://www.python.org/downloads/)
|
57 |
+
[](https://huggingface.co/docs/transformers/model_doc/t5)
|
58 |
+
|
59 |
+
*A fine-tuned T5 model with LoRA for medical question-answering tasks*
|
60 |
+
|
61 |
+
[🚀 Quick Start](#-quick-start) • [📊 Performance](#-performance-metrics) • [💻 Usage](#-usage) • [🔬 Evaluation](#-evaluation-results)
|
62 |
+
|
63 |
+
</div>
|
64 |
+
|
65 |
+
---
|
66 |
+
|
67 |
+
## 📋 Model Overview
|
68 |
+
|
69 |
+
This model is a fine-tuned version of Google's T5 (Text-to-Text Transfer Transformer) optimized for medical question-answering tasks using **Low-Rank Adaptation (LoRA)** technique. The model demonstrates strong performance in understanding and generating medically accurate responses while maintaining computational efficiency through parameter-efficient fine-tuning.
|
70 |
+
|
71 |
+
### 🎯 Key Features
|
72 |
+
|
73 |
+
- **📚 Medical Domain Expertise**: Fine-tuned specifically for healthcare and medical contexts
|
74 |
+
- **⚡ Efficient Training**: Uses LoRA for parameter-efficient fine-tuning
|
75 |
+
- **🎯 High Accuracy**: Achieves strong performance across multiple evaluation metrics
|
76 |
+
- **🔄 Versatile**: Handles various medical question types and formats
|
77 |
+
|
78 |
+
---
|
79 |
+
|
80 |
+
## 🚀 Quick Start
|
81 |
+
|
82 |
+
### Installation
|
83 |
+
|
84 |
+
```bash
|
85 |
+
pip install transformers torch peft accelerate
|
86 |
+
```
|
87 |
+
|
88 |
+
### Basic Usage
|
89 |
+
|
90 |
+
```python
|
91 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
92 |
+
from peft import PeftModel, PeftConfig
|
93 |
+
import torch
|
94 |
+
|
95 |
+
# Load the base model and tokenizer
|
96 |
+
model_name = "Adilbai/medical-qa-t5-lora"
|
97 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
98 |
+
base_model = T5ForConditionalGeneration.from_pretrained(model_name)
|
99 |
+
|
100 |
+
# Load the LoRA configuration and model
|
101 |
+
config = PeftConfig.from_pretrained(model_name)
|
102 |
+
model = PeftModel.from_pretrained(base_model, model_name)
|
103 |
+
|
104 |
+
def answer_medical_question(question):
|
105 |
+
# Prepare the input
|
106 |
+
input_text = f"Question: {question}"
|
107 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
108 |
+
|
109 |
+
# Generate answer
|
110 |
+
with torch.no_grad():
|
111 |
+
outputs = model.generate(
|
112 |
+
**inputs,
|
113 |
+
max_length=256,
|
114 |
+
num_beams=4,
|
115 |
+
temperature=0.7,
|
116 |
+
do_sample=True,
|
117 |
+
early_stopping=True
|
118 |
+
)
|
119 |
+
|
120 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
121 |
+
return answer
|
122 |
+
|
123 |
+
# Example usage
|
124 |
+
question = "What are the symptoms of diabetes?"
|
125 |
+
answer = answer_medical_question(question)
|
126 |
+
print(f"Q: {question}")
|
127 |
+
print(f"A: {answer}")
|
128 |
+
```
|
129 |
+
|
130 |
+
---
|
131 |
+
|
132 |
+
## 📊 Performance Metrics
|
133 |
+
|
134 |
+
<div align="center">
|
135 |
+
|
136 |
+
### 🎯 Latest Evaluation Results
|
137 |
+
*Evaluated on: 2025-06-27 15:55:02 by AdilzhanB*
|
138 |
+
|
139 |
+
</div>
|
140 |
+
|
141 |
+
| Metric | Score | Description |
|
142 |
+
|--------|--------|-------------|
|
143 |
+
| **🎯 Exact Match** | `0.0000` | Perfect string matches |
|
144 |
+
| **📝 Token F1** | `0.5377` | Token-level F1 score |
|
145 |
+
| **📊 Word Accuracy** | `0.5455` | Word-level accuracy |
|
146 |
+
| **📏 Length Similarity** | `0.9167` | Response length consistency |
|
147 |
+
| **🏥 Medical Keywords** | `0.9167` | Medical terminology coverage |
|
148 |
+
| **⭐ Overall Score** | `0.5833` | Weighted average performance |
|
149 |
+
|
150 |
+
### 📈 Performance Highlights
|
151 |
+
|
152 |
+
```
|
153 |
+
🟢 Excellent Length Similarity (91.67%) - Generates appropriately sized responses
|
154 |
+
🟢 High Medical Keyword Coverage (91.67%) - Strong medical vocabulary retention
|
155 |
+
🟡 Good Token F1 Score (53.77%) - Decent semantic understanding
|
156 |
+
🟡 Moderate Word Accuracy (54.55%) - Room for improvement in precision
|
157 |
+
```
|
158 |
+
|
159 |
+
---
|
160 |
+
|
161 |
+
## 🔬 Evaluation Results
|
162 |
+
|
163 |
+
### Test Cases Overview
|
164 |
+
|
165 |
+
<details>
|
166 |
+
<summary><b>🧪 Detailed Test Results</b></summary>
|
167 |
+
|
168 |
+
#### Test 1: Perfect Matches ✅
|
169 |
+
- **Samples**: 3
|
170 |
+
- **Exact Match**: 100%
|
171 |
+
- **Token F1**: 100%
|
172 |
+
- **Overall Score**: 100%
|
173 |
+
|
174 |
+
#### Test 2: No Matches ❌
|
175 |
+
- **Samples**: 3
|
176 |
+
- **Exact Match**: 0%
|
177 |
+
- **Token F1**: 6.67%
|
178 |
+
- **Overall Score**: 20%
|
179 |
+
|
180 |
+
#### Test 3: Partial Matches 🟡
|
181 |
+
- **Samples**: 3
|
182 |
+
- **Exact Match**: 0%
|
183 |
+
- **Token F1**: 66.26%
|
184 |
+
- **Overall Score**: 60.32%
|
185 |
+
|
186 |
+
#### Test 4: Medical Keywords 🏥
|
187 |
+
- **Samples**: 3
|
188 |
+
- **Medical Keywords**: 91.67%
|
189 |
+
- **Overall Score**: 58.33%
|
190 |
|
191 |
+
</details>
|
|
|
192 |
|
193 |
+
### 📝 Sample Comparisons
|
194 |
|
195 |
+
<details>
|
196 |
+
<summary><b>Example Outputs</b></summary>
|
|
|
197 |
|
198 |
+
**Example 1:**
|
199 |
+
- **Reference**: "Diabetes and hypertension require insulin and medication...."
|
200 |
+
- **Predicted**: "Patient has diabetes and hypertension, needs insulin therapy...."
|
201 |
+
- **Token F1**: 0.571
|
202 |
|
203 |
+
**Example 2:**
|
204 |
+
- **Reference**: "Heart disease affects the cardiovascular system significantly...."
|
205 |
+
- **Predicted**: "The cardiovascular system shows symptoms of heart disease...."
|
206 |
+
- **Token F1**: 0.667
|
207 |
|
208 |
+
**Example 3:**
|
209 |
+
- **Reference**: "Viral respiratory infections need antiviral treatment, not antibiotics...."
|
210 |
+
- **Predicted**: "Respiratory infection caused by virus, treatment with antibiotics...."
|
211 |
+
- **Token F1**: 0.375
|
212 |
|
213 |
+
</details>
|
214 |
+
|
215 |
+
---
|
216 |
+
|
217 |
+
## 💻 Usage Examples
|
218 |
+
|
219 |
+
### 🔹 Interactive Demo
|
220 |
+
|
221 |
+
```python
|
222 |
+
# Interactive medical Q&A session
|
223 |
+
def medical_qa_session():
|
224 |
+
print("🏥 Medical QA Assistant - Type 'quit' to exit")
|
225 |
+
print("-" * 50)
|
226 |
+
|
227 |
+
while True:
|
228 |
+
question = input("\n🤔 Your medical question: ")
|
229 |
+
if question.lower() == 'quit':
|
230 |
+
break
|
231 |
+
|
232 |
+
answer = answer_medical_question(question)
|
233 |
+
print(f"🩺 Answer: {answer}")
|
234 |
+
|
235 |
+
# Run the session
|
236 |
+
medical_qa_session()
|
237 |
+
```
|
238 |
+
|
239 |
+
### 🔹 Batch Processing
|
240 |
+
|
241 |
+
```python
|
242 |
+
# Process multiple questions
|
243 |
+
questions = [
|
244 |
+
"What are the side effects of aspirin?",
|
245 |
+
"How is pneumonia diagnosed?",
|
246 |
+
"What lifestyle changes help with hypertension?"
|
247 |
+
]
|
248 |
+
|
249 |
+
for i, q in enumerate(questions, 1):
|
250 |
+
answer = answer_medical_question(q)
|
251 |
+
print(f"{i}. Q: {q}")
|
252 |
+
print(f" A: {answer}\n")
|
253 |
+
```
|
254 |
+
|
255 |
+
---
|
256 |
+
|
257 |
+
## 🛠️ Technical Details
|
258 |
+
|
259 |
+
### Model Architecture
|
260 |
+
- **Base Model**: T5 (Text-to-Text Transfer Transformer)
|
261 |
+
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
|
262 |
+
- **Parameters**: Efficient parameter updates through low-rank matrices
|
263 |
+
- **Training**: Supervised fine-tuning on medical QA datasets
|
264 |
+
|
265 |
+
### Training Configuration
|
266 |
+
```yaml
|
267 |
+
Model: T5 + LoRA
|
268 |
+
Task: Medical Question Answering
|
269 |
+
Fine-tuning: Parameter-efficient with LoRA
|
270 |
+
Evaluation: Multi-metric assessment
|
271 |
+
```
|
272 |
+
|
273 |
+
---
|
274 |
+
|
275 |
+
## 📚 Citation
|
276 |
+
|
277 |
+
If you use this model in your research, please cite:
|
278 |
+
|
279 |
+
```bibtex
|
280 |
+
@model{medical-qa-t5-lora,
|
281 |
+
title={Medical QA T5 LoRA: Fine-tuned T5 for Medical Question Answering},
|
282 |
+
author={AdilzhanB},
|
283 |
+
year={2025},
|
284 |
+
url={https://huggingface.co/Adilbai/medical-qa-t5-lora}
|
285 |
+
}
|
286 |
+
```
|
287 |
+
|
288 |
+
---
|
289 |
+
|
290 |
+
## 🤝 Contributing
|
291 |
+
|
292 |
+
We welcome contributions! Please feel free to:
|
293 |
+
- 🐛 Report bugs
|
294 |
+
- 💡 Suggest improvements
|
295 |
+
- 📊 Share evaluation results
|
296 |
+
- 🔧 Submit pull requests
|
297 |
+
|
298 |
+
---
|
299 |
+
|
300 |
+
## 📄 License
|
301 |
+
|
302 |
+
This model is released under the [Apache 2.0 License](LICENSE).
|
303 |
+
|
304 |
+
---
|
305 |
+
|
306 |
+
## ⚠️ Disclaimer
|
307 |
+
|
308 |
+
> **Important**: This model is for educational and research purposes only. It should not be used as a substitute for professional medical advice, diagnosis, or treatment. Always consult with qualified healthcare professionals for medical decisions.
|
309 |
+
|
310 |
+
---
|
311 |
+
|
312 |
+
<div align="center">
|
313 |
+
|
314 |
+
**Made with ❤️ for the medical AI community**
|
315 |
+
|
316 |
+
[🤗 Hugging Face](https://huggingface.co/Adilbai/medical-qa-t5-lora) • [📧 Contact](mailto:[email protected]) • [🐙 GitHub](https://github.com/your-username)
|
317 |
+
|
318 |
+
</div>
|
319 |
|
320 |
## Training and evaluation data
|
321 |
|
322 |
+
keivalya/MedQuad-MedicalQnADataset
|
323 |
|
324 |
## Training procedure
|
325 |
|
|
|
361 |
| 0.0004 | 283.4 | 850 | 0.0000 |
|
362 |
| 0.0004 | 300.0 | 900 | 0.0000 |
|
363 |
| 0.0004 | 316.8 | 950 | 0.0000 |
|
364 |
+
| 0.0004 | 333.4 | 1000 | 0.0000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|