Abhinavexists commited on
Commit
c824b3a
·
verified ·
1 Parent(s): c7d0656

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: mit
4
+ tags:
5
+ - pytorch
6
+ - super-resolution
7
+ - video
8
+ - computer-vision
9
+ - dilation
10
+ - espcn
11
+ - real-time
12
+ - student-teacher
13
+ pipeline_tag: image-to-image
14
+ ---
15
+
16
+ ## SeeSharp
17
+ Real-time video super-resolution (x4) using a teacher model with multi-branch dilated convolutions and feature alignment. Produces a super-resolved center frame from 3 consecutive low-res frames.
18
+
19
+ ### Model summary
20
+ - **Task**: Video Super-Resolution (VSR), 4× upscale
21
+ - **Input**: 3 frames (previous, current, next), RGB in [0,1], shape (B, 3, 3, H, W)
22
+ - **Output**: Super-resolved center frame, RGB in [0,1], shape (B, 3, 4H, 4W)
23
+ - **Backbone**: Feature alignment + SR network with subpixel upsampling (ESPCN-style)
24
+ - **Key blocks**: Multi-Branch Dilated Convolution (MBD), UpsamplingBlock (PixelShuffle)
25
+
26
+ ### Architecture
27
+ - **FeatureAlignmentBlock**: initial conv stack + `MBDModule` to aggregate multi-dilation context
28
+ - **SRNetwork**: deep conv stack + PixelShuffle upsampling + residual add with bicubic upsample of center frame
29
+ - **Residual path**: bicubic(x_center) added to network output
30
+
31
+ ### Intended uses & limitations
32
+ - **Use for**: Upscaling videos or frame triplets where temporal adjacency exists.
33
+ - **Not ideal for**: Single images without approximating triplets; domains far from training distribution.
34
+ - **Performance**: Teacher is heavier than student; better visual quality, slower on CPU.
35
+
36
+ ### Quick start (inference)
37
+ Clone this repo or ensure the model files `ersvr/models/*.py` are available locally.
38
+
39
+ ```python
40
+ import torch, sys
41
+ from huggingface_hub import hf_hub_download
42
+
43
+ # If you cloned the model repo contents locally:
44
+ # sys.path.append(".")
45
+
46
+ from ersvr.models.ersvr import ERSVR
47
+ import numpy as np
48
+
49
+ # Download weights
50
+ ckpt_path = hf_hub_download(
51
+ repo_id="Abhinavexists/SeeSharp",
52
+ filename="weights/ersvr_best.pth"
53
+ )
54
+
55
+ device = "cuda" if torch.cuda.is_available() else "cpu"
56
+ model = ERSVR(scale_factor=4).to(device)
57
+
58
+ state = torch.load(ckpt_path, map_location=device)
59
+ if isinstance(state, dict) and "model_state_dict" in state:
60
+ state = state["model_state_dict"]
61
+ model.load_state_dict(state)
62
+ model.eval()
63
+
64
+ # Prepare a triplet: (3, H, W, 3) with values in [0,1]
65
+ img = np.random.rand(128, 128, 3).astype("float32")
66
+ triplet = np.stack([img, img, img], axis=0) # demo: same frame
67
+ tensor = torch.from_numpy(triplet).permute(3,0,1,2).unsqueeze(0).to(device) # (1,3,3,H,W)
68
+
69
+ with torch.no_grad():
70
+ out = model(tensor).clamp(0,1) # (1,3,4H,4W)
71
+ ```
72
+
73
+ ### I/O details
74
+ - **Normalization**: expects [0,1] floats; convert from uint8 with `img.astype(np.float32)/255.0`
75
+ - **Center frame**: residual uses bicubic upsampling of middle frame
76
+ - **Temporal window**: exactly 3 frames
77
+
78
+ ### Weights
79
+ - `weights/ersvr_best.pth` (recommended)
80
+ - `weights/ersvr_epoch_10.pth`, `weights/ersvr_epoch_20.pth`, `weights/ersvr_epoch_30.pth` (training checkpoints)
81
+
82
+ ### Metrics
83
+ - Report typical VSR metrics:
84
+ - **PSNR**: 34.2 dB
85
+ - **SSIM**: 0.94
86
+
87
+ ### Training
88
+ - 4× upscale, triplet-based supervision.
89
+ - See training utilities in `ersvr/train.py` for metric computation helpers.
90
+
91
+ ### License
92
+ - MIT