import os import shutil import random import numpy as np import tensorflow as tf from tensorflow.keras import layers, models from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from tensorflow.keras.applications.densenet import DenseNet121, preprocess_input # --------------------------- # Clear session # --------------------------- tf.keras.backend.clear_session() # --------------------------- # Paths # --------------------------- DATA_DIR = "/kaggle/input/Banana Disease Recognition Dataset/Original Images/Original Images" BASE_DIR = "/kaggle/working/banana_split" TRAIN_DIR = os.path.join(BASE_DIR, "train") VAL_DIR = os.path.join(BASE_DIR, "val") # --------------------------- # Create train/val split # --------------------------- os.makedirs(TRAIN_DIR, exist_ok=True) os.makedirs(VAL_DIR, exist_ok=True) for cls in os.listdir(DATA_DIR): cls_path = os.path.join(DATA_DIR, cls) if not os.path.isdir(cls_path): continue os.makedirs(os.path.join(TRAIN_DIR, cls), exist_ok=True) os.makedirs(os.path.join(VAL_DIR, cls), exist_ok=True) files = [f for f in os.listdir(cls_path) if os.path.isfile(os.path.join(cls_path, f))] random.shuffle(files) split_idx = int(0.8 * len(files)) for f in files[:split_idx]: shutil.copy(os.path.join(cls_path, f), os.path.join(TRAIN_DIR, cls, f)) for f in files[split_idx:]: shutil.copy(os.path.join(cls_path, f), os.path.join(VAL_DIR, cls, f)) print("✅ Dataset successfully split into train & val folders") # --------------------------- # Parameters # --------------------------- IMG_SIZE = (256, 256) BATCH_SIZE = 32 EPOCHS = 30 # --------------------------- # Data Generators # --------------------------- train_datagen = ImageDataGenerator( preprocessing_function=preprocess_input, rotation_range=90, horizontal_flip=True, vertical_flip=True, zoom_range=0.2 ) val_datagen = ImageDataGenerator(preprocessing_function=preprocess_input) train_generator = train_datagen.flow_from_directory( TRAIN_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode="categorical", color_mode="rgb" ) val_generator = val_datagen.flow_from_directory( VAL_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode="categorical", color_mode="rgb" ) # --------------------------- # Build model - DenseNet121 # --------------------------- num_classes = train_generator.num_classes base_model = DenseNet121( include_top=False, weights='imagenet', input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3) ) base_model.trainable = False # Freeze initially x = layers.GlobalAveragePooling2D()(base_model.output) x = layers.Dropout(0.4)(x) output = layers.Dense(num_classes, activation='softmax')(x) model = models.Model(inputs=base_model.input, outputs=output) model.compile( optimizer=tf.keras.optimizers.Adam(), loss="categorical_crossentropy", metrics=["accuracy"] ) model.summary() # --------------------------- # Callbacks # --------------------------- early_stop = EarlyStopping(monitor="val_loss", patience=7, restore_best_weights=True, verbose=1) lr_reduce = ReduceLROnPlateau(monitor="val_loss", factor=0.2, patience=3, verbose=1) # --------------------------- # Train # --------------------------- history = model.fit( train_generator, validation_data=val_generator, epochs=EPOCHS, callbacks=[early_stop, lr_reduce] ) # --------------------------- # Save class names & model # --------------------------- np.save("class_names.npy", np.array(list(train_generator.class_indices.keys()))) model.save("banana_disease_densenet121.keras") print("✅ Training complete. Model saved as 'banana_disease_densenet121.keras'")