File size: 3,943 Bytes
9b6aeb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import shutil
import random
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
from tensorflow.keras.applications.densenet import DenseNet121, preprocess_input

# ---------------------------
# Clear session
# ---------------------------
tf.keras.backend.clear_session()

# ---------------------------
# Paths
# ---------------------------
DATA_DIR = "/kaggle/input/Banana Disease Recognition Dataset/Original Images/Original Images"
BASE_DIR = "/kaggle/working/banana_split"
TRAIN_DIR = os.path.join(BASE_DIR, "train")
VAL_DIR = os.path.join(BASE_DIR, "val")

# ---------------------------
# Create train/val split
# ---------------------------
os.makedirs(TRAIN_DIR, exist_ok=True)
os.makedirs(VAL_DIR, exist_ok=True)

for cls in os.listdir(DATA_DIR):
    cls_path = os.path.join(DATA_DIR, cls)
    if not os.path.isdir(cls_path):
        continue
    os.makedirs(os.path.join(TRAIN_DIR, cls), exist_ok=True)
    os.makedirs(os.path.join(VAL_DIR, cls), exist_ok=True)
    
    files = [f for f in os.listdir(cls_path) if os.path.isfile(os.path.join(cls_path, f))]
    random.shuffle(files)
    split_idx = int(0.8 * len(files))
    
    for f in files[:split_idx]:
        shutil.copy(os.path.join(cls_path, f), os.path.join(TRAIN_DIR, cls, f))
    for f in files[split_idx:]:
        shutil.copy(os.path.join(cls_path, f), os.path.join(VAL_DIR, cls, f))

print("✅ Dataset successfully split into train & val folders")

# ---------------------------
# Parameters
# ---------------------------
IMG_SIZE = (256, 256)
BATCH_SIZE = 32
EPOCHS = 30

# ---------------------------
# Data Generators
# ---------------------------
train_datagen = ImageDataGenerator(
    preprocessing_function=preprocess_input,
    rotation_range=90,
    horizontal_flip=True,
    vertical_flip=True,
    zoom_range=0.2
)

val_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)

train_generator = train_datagen.flow_from_directory(
    TRAIN_DIR,
    target_size=IMG_SIZE,
    batch_size=BATCH_SIZE,
    class_mode="categorical",
    color_mode="rgb"
)

val_generator = val_datagen.flow_from_directory(
    VAL_DIR,
    target_size=IMG_SIZE,
    batch_size=BATCH_SIZE,
    class_mode="categorical",
    color_mode="rgb"
)

# ---------------------------
# Build model - DenseNet121
# ---------------------------
num_classes = train_generator.num_classes

base_model = DenseNet121(
    include_top=False,
    weights='imagenet',
    input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3)
)

base_model.trainable = False  # Freeze initially

x = layers.GlobalAveragePooling2D()(base_model.output)
x = layers.Dropout(0.4)(x)
output = layers.Dense(num_classes, activation='softmax')(x)

model = models.Model(inputs=base_model.input, outputs=output)

model.compile(
    optimizer=tf.keras.optimizers.Adam(),
    loss="categorical_crossentropy",
    metrics=["accuracy"]
)

model.summary()

# ---------------------------
# Callbacks
# ---------------------------
early_stop = EarlyStopping(monitor="val_loss", patience=7, restore_best_weights=True, verbose=1)
lr_reduce = ReduceLROnPlateau(monitor="val_loss", factor=0.2, patience=3, verbose=1)

# ---------------------------
# Train
# ---------------------------
history = model.fit(
    train_generator,
    validation_data=val_generator,
    epochs=EPOCHS,
    callbacks=[early_stop, lr_reduce]
)

# ---------------------------
# Save class names & model
# ---------------------------
np.save("class_names.npy", np.array(list(train_generator.class_indices.keys())))
model.save("banana_disease_densenet121.keras")
print("✅ Training complete. Model saved as 'banana_disease_densenet121.keras'")