|
|
|
import numpy as np |
|
import torch |
|
from axengine import InferenceSession |
|
from ml_dtypes import bfloat16 |
|
from transformers import AutoModel, AutoTokenizer, AutoConfig, AutoModelForCausalLM |
|
from tqdm import tqdm |
|
from einops import rearrange |
|
from janus.models import MultiModalityCausalLM, VLChatProcessor |
|
from janus.models.modeling_vlm import MultiModalityConfig |
|
from janus.utils.io import load_pil_images |
|
import argparse |
|
import os |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Model configuration parameters") |
|
parser.add_argument("--tokenizer_dir", type=str, default="Janus-Pro-1B", |
|
help="Path to HuggingFace model") |
|
parser.add_argument("--axmodel_path", type=str, default="janus_pro_1B_axmodel", |
|
help="Path to save compiled axmodel of llama model") |
|
parser.add_argument("-i", "--test_img_path", type=str, default="./imgs/image.png", |
|
help="Test image path (supports png/jpg formats)") |
|
parser.add_argument("--vit_axmodel_path", type=str, default="vit_axmodel/janus_warp_vit.axmodel", |
|
help="Path to ViT model's axmodel") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
tokenizer_dir = args.tokenizer_dir |
|
axmodel_path = args.axmodel_path |
|
test_img_path = args.test_img_path |
|
vit_axmodel_path = args.vit_axmodel_path |
|
embeds = np.load(os.path.join(args.axmodel_path, "model.embed_tokens.weight.npy")) |
|
|
|
|
|
def prepare_inputs_embeds( |
|
input_ids: torch.LongTensor, |
|
pixel_values: torch.FloatTensor, |
|
images_seq_mask: torch.LongTensor, |
|
images_emb_mask: torch.LongTensor, |
|
**kwargs, |
|
): |
|
""" |
|
|
|
Args: |
|
input_ids (torch.LongTensor): [b, T] |
|
pixel_values (torch.FloatTensor): [b, n_images, 3, h, w] |
|
images_seq_mask (torch.BoolTensor): [b, T] |
|
images_emb_mask (torch.BoolTensor): [b, n_images, n_image_tokens] |
|
|
|
assert torch.sum(images_seq_mask) == torch.sum(images_emb_mask) |
|
|
|
Returns: |
|
input_embeds (torch.Tensor): [b, T, D] |
|
""" |
|
|
|
bs, n = pixel_values.shape[0:2] |
|
images = rearrange(pixel_values, "b n c h w -> (b n) c h w") |
|
|
|
vit_session = InferenceSession(vit_axmodel_path) |
|
images_embeds = vit_session.run(None, {"image": pixel_values[0].numpy()})[0] |
|
print(f"vit_output.shape is {images_embeds.shape}, vit feature extract done!") |
|
|
|
|
|
images_embeds = rearrange(images_embeds, "(b n) t d -> b (n t) d", b=bs, n=n) |
|
|
|
images_emb_mask = rearrange(images_emb_mask, "b n t -> b (n t)") |
|
|
|
|
|
input_ids[input_ids < 0] = 0 |
|
inputs_embeds = np.take(embeds, input_ids[0].cpu().numpy().tolist(), axis=0)[None, ...] |
|
inputs_embeds[images_seq_mask] = images_embeds[images_emb_mask] |
|
|
|
return inputs_embeds |
|
|
|
def post_process(data, topk=1, topp=0.9, temperature=0.6): |
|
def top_p(l: np.ndarray, p: float) -> np.ndarray: |
|
index = np.argsort(l) |
|
res = l.copy() |
|
sum_p = 0 |
|
for i in index[::-1]: |
|
if sum_p >= p: |
|
res[i] = 0 |
|
sum_p += res[i] |
|
return res / sum_p |
|
|
|
def softmax(l: np.ndarray) -> np.ndarray: |
|
l_max = l - l.max() |
|
l_exp = np.exp(l_max) |
|
res = l_exp / np.sum(l_exp) |
|
return res.astype(np.float64) |
|
|
|
r = data.astype(np.float32) |
|
r = r.flatten() |
|
candidate_index = np.argpartition(r, -topk)[-topk:] |
|
candidate_value = r[candidate_index] |
|
candidate_value /= temperature |
|
candidate_soft = softmax(candidate_value) |
|
candidate_soft = top_p(candidate_soft, topp) |
|
candidate_soft = candidate_soft.astype(np.float64) / candidate_soft.sum() |
|
pos = np.random.multinomial(1, candidate_soft).argmax() |
|
next_token = candidate_index[pos] |
|
return next_token, candidate_index, candidate_soft |
|
|
|
config: MultiModalityConfig = AutoConfig.from_pretrained(tokenizer_dir, trust_remote_code=True) |
|
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(tokenizer_dir) |
|
tokenizer = vl_chat_processor.tokenizer |
|
|
|
|
|
question = "Please describe the picture." |
|
conversation = [ |
|
{ |
|
"role": "User", |
|
"content": f"<image_placeholder>\n{question}", |
|
"images": [test_img_path], |
|
}, |
|
{"role": "Assistant", "content": ""}, |
|
] |
|
|
|
|
|
pil_images = load_pil_images(conversation) |
|
prepare_inputs = vl_chat_processor( |
|
conversations=conversation, images=pil_images, force_batchify=True |
|
) |
|
|
|
input_embedding = prepare_inputs_embeds(**prepare_inputs) |
|
token_ids = prepare_inputs['input_ids'].squeeze().numpy().tolist() |
|
prefill_data = input_embedding |
|
prefill_data = prefill_data.astype(bfloat16) |
|
token_len = len(token_ids) |
|
|
|
lastN = 1023 |
|
cfg = config.language_config |
|
|
|
kv_dim = cfg.hidden_size // cfg.num_attention_heads * cfg.num_key_value_heads |
|
k_caches = [ |
|
np.zeros((1, lastN, kv_dim), dtype=bfloat16) |
|
for _ in range(cfg.num_hidden_layers) |
|
] |
|
v_caches = [ |
|
np.zeros((1, lastN, kv_dim), dtype=bfloat16) |
|
for _ in range(cfg.num_hidden_layers) |
|
] |
|
|
|
prefill_decoder_sessins = [] |
|
for i in tqdm(range(cfg.num_hidden_layers), desc="Init InferenceSession"): |
|
session = InferenceSession( |
|
f"{axmodel_path}/llama_p640_l{i}_together.axmodel" |
|
) |
|
prefill_decoder_sessins.append(session) |
|
post_process_session = InferenceSession( |
|
f"{axmodel_path}/llama_post.axmodel" |
|
) |
|
print("model load done!") |
|
|
|
""" |
|
prefill |
|
""" |
|
prefill_len = 640 |
|
|
|
if prefill_len > 0: |
|
indices = np.array(list(range(prefill_len)), np.uint32).reshape( |
|
(1, prefill_len) |
|
) |
|
indices[:, token_len:] = 0 |
|
mask = np.zeros((1, prefill_len, prefill_len)) - 65536 |
|
data = np.zeros((1, prefill_len, cfg.hidden_size)).astype(bfloat16) |
|
data[:, 0:token_len] = prefill_data |
|
for i, t in enumerate(token_ids): |
|
mask[:, i, : i + 1] = 0 |
|
mask = mask.astype(bfloat16) |
|
for i in range(cfg.num_hidden_layers): |
|
input_feed = { |
|
"K_cache": np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16), |
|
"V_cache": np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16), |
|
"indices": indices, |
|
"input": data, |
|
"mask": mask, |
|
} |
|
outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=1) |
|
k_caches[i][:, :token_len, :] = outputs[0][:, :token_len, :] |
|
v_caches[i][:, :token_len, :] = outputs[1][:, :token_len, :] |
|
data[:, :token_len] = outputs[2][:, :token_len, :] |
|
|
|
post_out = post_process_session.run(None, {"input": data[:, token_len - 1, :][None, ...]})[0] |
|
next_token, posssible_tokens, possible_soft = post_process(post_out, topk=1) |
|
posibles = [tokenizer.decode([t]) for t in posssible_tokens] |
|
posible_soft = [str((t, s)) for t, s in zip(posibles, possible_soft)] |
|
token_ids.append(next_token) |
|
print("prefill done!") |
|
|
|
""" |
|
decode |
|
""" |
|
mask = np.zeros((1, 1, lastN + 1), dtype=np.float32).astype(bfloat16) |
|
mask[:, :, :lastN] -= 65536 |
|
mask[:, :, :token_len] = 0 |
|
for start_indice in tqdm(range(lastN + 1), desc="Decoder"): |
|
if prefill_len > 0 and start_indice < token_len: |
|
continue |
|
next_token = token_ids[start_indice] |
|
indices = np.array([start_indice], np.uint32).reshape((1, 1)) |
|
data = embeds[next_token, :].reshape((1, 1, cfg.hidden_size)).astype(bfloat16) |
|
|
|
for i in range(cfg.num_hidden_layers): |
|
input_feed = { |
|
"K_cache": k_caches[i], |
|
"V_cache": v_caches[i], |
|
"indices": indices, |
|
"input": data, |
|
"mask": mask, |
|
} |
|
outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=0) |
|
k_caches[i][:, start_indice, :] = outputs[0][:, :, :] |
|
v_caches[i][:, start_indice, :] = outputs[1][:, :, :] |
|
data = outputs[2] |
|
|
|
mask[..., start_indice] = 0 |
|
if start_indice < token_len - 1: |
|
pass |
|
else: |
|
post_out = post_process_session.run(None, {"input": data})[0] |
|
next_token, posssible_tokens, possible_soft = post_process(post_out) |
|
token_ids.append(next_token) |
|
if next_token == tokenizer.eos_token_id: |
|
print("hit eos!") |
|
break |
|
print("Janus Answers: ", tokenizer.decode(token_ids[token_len:], skip_special_tokens=True)) |
|
|