File size: 11,196 Bytes
f4acc5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# REF: https://github.com/deepseek-ai/Janus
import numpy as np
import torch
from axengine import InferenceSession
from ml_dtypes import bfloat16
from transformers import AutoModel, AutoTokenizer, AutoConfig, AutoModelForCausalLM
from tqdm import tqdm
from einops import rearrange
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.models.modeling_vlm import MultiModalityConfig
from janus.utils.io import load_pil_images
import os
import PIL.Image
from loguru import logger
import onnxruntime
import argparse


parser = argparse.ArgumentParser(description="Model configuration parameters")
parser.add_argument("--tokenizer_dir", type=str, default="Janus-Pro-1B",
                    help="Path to HuggingFace model")
parser.add_argument("--axmodel_path", type=str, default="janus_pro_1B_axmodel",
                    help="Path to save compiled axmodel of llama model")
args = parser.parse_args()


# base info
tokenizer_dir = args.tokenizer_dir
axmodel_path = args.axmodel_path

"""ONNX MODEL"""
gen_vision_model_decode = onnxruntime.InferenceSession("./img_gen_onnx/gen_vision_model_decode_sim.onnx", providers=["CPUExecutionProvider"])
gen_aligner = onnxruntime.InferenceSession("./img_gen_onnx/gen_aligner.onnx", providers=["CPUExecutionProvider"])
gen_head = onnxruntime.InferenceSession("./img_gen_onnx/post_head.onnx", providers=["CPUExecutionProvider"])
post_norm = onnxruntime.InferenceSession("./img_gen_onnx/post_norm.onnx", providers=["CPUExecutionProvider"])
"""ONNX MODEL"""

"""EMBEDINGs"""
embeds = np.load(f"{axmodel_path}/model.embed_tokens.weight.npy")
gen_embed = np.load("./embeds/gen_embed.npy")
codebook_entry_embedding = torch.load('./embeds/codebook_entry_embedding.pt', map_location=torch.device('cpu'))
"""EMBEDINGs"""


def prefill(
    cfg,
    prefill_decoder_sessins,
    vl_chat_processor: VLChatProcessor,
    prompt: str,
    temperature: float = 1,
    parallel_size: int = 1,
    cfg_weight: float = 5,
    image_token_num_per_image: int = 576,
):
    input_ids = vl_chat_processor.tokenizer.encode(prompt)
    input_ids = torch.LongTensor(input_ids)

    tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int)
    for i in range(parallel_size*2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1: -1] = vl_chat_processor.pad_id

    inputs_embeds = embeds[tokens.numpy()]
    batch, token_len, seq_dim = inputs_embeds.shape
    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int)
    prefill_len = 640
    token_ids = tokens

    ###################################################################
    lastN = 1023
    kv_dim = cfg.hidden_size // cfg.num_attention_heads * cfg.num_key_value_heads
    batch_k_caches = {}
    batch_v_caches = {}

    for bid in range(batch):
        batch_k_caches[bid] = [
            np.zeros((1, lastN, kv_dim), dtype=bfloat16)
            for _ in range(cfg.num_hidden_layers)
        ]
        batch_v_caches[bid] = [
            np.zeros((1, lastN, kv_dim), dtype=bfloat16)
            for _ in range(cfg.num_hidden_layers)
        ]
    ###################################################################
    mask = np.zeros((1, prefill_len, prefill_len)) - 65536
    for j in range(token_len):
        mask[:, j, :j + 1] = 0
    mask = mask.astype(bfloat16)

    indices = np.array(list(range(prefill_len)), np.uint32).reshape(
        (1, prefill_len)
    )
    indices[:, token_len:] = 0
    hidden_states = np.zeros((batch, token_len, cfg.hidden_size)).astype(bfloat16)

    for bid in range(batch):
        data = np.zeros((1, prefill_len, cfg.hidden_size)).astype(bfloat16)
        data[:, 0:token_len] = inputs_embeds[bid].astype(bfloat16)
        k_caches = batch_k_caches[bid]
        v_caches = batch_v_caches[bid]

        for i in range(cfg.num_hidden_layers):
            input_feed = {
                "K_cache": np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16),
                "V_cache": np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16),
                "indices": indices,
                "input": data,
                "mask": mask,
            }
            outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=1)
            k_caches[i][:, :token_len, :] = outputs[0][:, :token_len, :]
            v_caches[i][:, :token_len, :] = outputs[1][:, :token_len, :]
            data[:, :token_len] = outputs[2][:, :token_len, :]

        ######## BATCH ###########
        hidden_states[bid] = data[:, :token_len]
        batch_k_caches[bid] = k_caches
        batch_v_caches[bid] = v_caches

    ################# NORM & GEN-HEAD ########################
    hidden_states = post_norm.run(["output"], {"input": hidden_states[:, -1:, :].astype(np.float32)})[0]
    logits = gen_head.run(["output"], {"input": hidden_states[:, -1, :]})[0] # 与 llama head 不同, 此 head 为图像生成专用
    ############# POST & GET NEXT TOKEN #############
    logits = torch.from_numpy(logits)
    logit_cond = logits[0::2, :]
    logit_uncond = logits[1::2, :]
    logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
    probs = torch.softmax(logits / temperature, dim=-1)
    next_token = torch.multinomial(probs, num_samples=1)
    generated_tokens[:, 0] = next_token.squeeze(dim=-1)
    next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
    ################## PREPARE_GEN_IMG_EMBEDS ##################
    gen_embed_res = np.take(gen_embed, next_token.numpy().tolist(), axis=0)
    img_embeds = gen_aligner.run(["output"], {"input": gen_embed_res})[0]
    inputs_embeds = np.expand_dims(img_embeds, axis=1)
    return inputs_embeds, token_ids, generated_tokens, batch_k_caches, batch_v_caches


@torch.inference_mode()
def generate(
    cfg,
    prefill_decoder_sessins,
    vl_chat_processor: VLChatProcessor,
    prompt: str,
    temperature: float = 1,
    parallel_size: int = 1, # 目前只支持固定为 1
    cfg_weight: float = 5,
    image_token_num_per_image: int = 576,
    img_size: int = 384,
    patch_size: int = 16,
):
    inputs_embeds, token_ids, generated_tokens, batch_k_caches, batch_v_caches = prefill(
        cfg, prefill_decoder_sessins, vl_chat_processor,
        prompt, temperature, parallel_size, cfg_weight, image_token_num_per_image
    )

    logger.debug("prefill completed!")
    token_len = token_ids.shape[1]

    lastN = 1023

    batch = parallel_size * 2

    mask = np.zeros((1, 1, lastN + 1), dtype=np.float32).astype(bfloat16)
    mask[:, :, :lastN] -= 65536
    mask[:, :, :token_len] = 0

    for image_token_i in tqdm(range(1, image_token_num_per_image), desc="ImageToken"):

        # 下面是 decode 逻辑
        start_indice = image_token_i + token_len - 1
        indices = np.array([start_indice], np.uint32).reshape((1, 1))
        hidden_states = np.zeros((batch, 1, cfg.hidden_size)).astype(bfloat16) # batch, 1, seq_dim
        assert (inputs_embeds[0] == inputs_embeds[1]).all()

        for bid in range(batch):
            k_caches = batch_k_caches[bid]
            v_caches = batch_v_caches[bid]
            data = inputs_embeds[:1, ...].astype(bfloat16)

            for i in range(cfg.num_hidden_layers):
                input_feed = {
                    "K_cache": k_caches[i],
                    "V_cache": v_caches[i],
                    "indices": indices,
                    "input": data,
                    "mask": mask,
                }

                outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=0)
                k_caches[i][:, start_indice, :] = outputs[0][:, :, :]
                v_caches[i][:, start_indice, :] = outputs[1][:, :, :]
                data = outputs[2]

            hidden_states[bid] = data
            batch_k_caches[bid] = k_caches
            batch_v_caches[bid] = v_caches

        mask[..., start_indice] = 0

        ############### NORM & GEN_HEAD #######################
        hidden_states = post_norm.run(["output"], {"input": hidden_states.astype(np.float32)})[0]
        logits = gen_head.run(["output"], {"input": hidden_states[:, -1, :]})[0]
        ############# POST & GET NEXT TOKEN #############
        logits = torch.from_numpy(logits)
        logit_cond = logits[0::2, :]
        logit_uncond = logits[1::2, :]
        logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
        probs = torch.softmax(logits / temperature, dim=-1)
        next_token = torch.multinomial(probs, num_samples=1)
        generated_tokens[:, image_token_i] = next_token.squeeze(dim=-1)
        next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
        ################## PREPARE_GEN_IMG_EMBEDS ##################
        gen_embed_res = np.take(gen_embed, next_token.numpy().tolist(), axis=0)
        img_embeds = gen_aligner.run(["output"], {"input": gen_embed_res})[0]
        inputs_embeds = np.expand_dims(img_embeds, axis=1)

    # z_q 为 vision decode 的输出
    indices = generated_tokens.to(dtype=torch.int)
    shape = [parallel_size, 8, img_size//patch_size, img_size//patch_size]
    z_q = codebook_entry_embedding[indices]  # (b*h*w, c)
    z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1])
    # reshape back to match original input shape
    z_q = z_q.permute(0, 3, 1, 2)
    dec = gen_vision_model_decode.run(['image'], {'quant': z_q.to(dtype=torch.float32).numpy()})[0]
    dec = dec.transpose(0, 2, 3, 1)
    dec = np.clip((dec + 1) / 2 * 255, 0, 255)
    visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec

    os.makedirs('generated_samples', exist_ok=True)
    for i in range(parallel_size):
        save_path = os.path.join('generated_samples', "img_{}.jpg".format(i))
        PIL.Image.fromarray(visual_img[i]).save(save_path)

###################################################################
config: MultiModalityConfig = AutoConfig.from_pretrained(tokenizer_dir, trust_remote_code=True)
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(tokenizer_dir)
tokenizer = vl_chat_processor.tokenizer

description = "A close-up high-contrast photo of Sydney Opera House sitting next to Eiffel tower, under a blue night sky of roiling energy, exploding yellow stars, and radiating swirls of blue."

conversation = [
    {
        "role": "User",
        "content": description,
    },
    {"role": "Assistant", "content": ""},
]

sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
    conversations=conversation,
    sft_format=vl_chat_processor.sft_format,
    system_prompt="",
)
prompt = sft_format + vl_chat_processor.image_start_tag
###################################################################

cfg = config.language_config

prefill_decoder_sessins = []
for i in tqdm(range(cfg.num_hidden_layers), desc="Init InferenceSession"):
    session = InferenceSession(
        f"{axmodel_path}/llama_p640_l{i}_together.axmodel"
    )
    prefill_decoder_sessins.append(session)

logger.info("model load done!")

generate(
    cfg,
    prefill_decoder_sessins,
    vl_chat_processor,
    prompt
)