Update README.md
Browse files
README.md
CHANGED
|
@@ -1,23 +1,22 @@
|
|
| 1 |
---
|
| 2 |
-
language:
|
| 3 |
-
- it_IT
|
| 4 |
-
- it_IT
|
| 5 |
tags:
|
| 6 |
-
-
|
|
|
|
|
|
|
| 7 |
metrics:
|
| 8 |
- rouge
|
| 9 |
model-index:
|
| 10 |
- name: summarization_mbart_mlsum
|
| 11 |
results: []
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
| 15 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
-
It achieves the following results on the evaluation set:
|
| 21 |
- Loss: 3.3336
|
| 22 |
- Rouge1: 19.3489
|
| 23 |
- Rouge2: 6.4028
|
|
@@ -25,19 +24,13 @@ It achieves the following results on the evaluation set:
|
|
| 25 |
- Rougelsum: 16.5387
|
| 26 |
- Gen Len: 33.5945
|
| 27 |
|
| 28 |
-
##
|
| 29 |
-
|
| 30 |
-
More information needed
|
| 31 |
-
|
| 32 |
-
## Intended uses & limitations
|
| 33 |
-
|
| 34 |
-
More information needed
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
### Training hyperparameters
|
| 43 |
|
|
@@ -50,13 +43,9 @@ The following hyperparameters were used during training:
|
|
| 50 |
- lr_scheduler_type: linear
|
| 51 |
- num_epochs: 4.0
|
| 52 |
|
| 53 |
-
### Training results
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
### Framework versions
|
| 58 |
|
| 59 |
- Transformers 4.15.0.dev0
|
| 60 |
- Pytorch 1.10.0+cu102
|
| 61 |
- Datasets 1.15.1
|
| 62 |
-
- Tokenizers 0.10.3
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
+
- summarization
|
| 4 |
+
language:
|
| 5 |
+
- it
|
| 6 |
metrics:
|
| 7 |
- rouge
|
| 8 |
model-index:
|
| 9 |
- name: summarization_mbart_mlsum
|
| 10 |
results: []
|
| 11 |
+
datasets:
|
| 12 |
+
- ARTeLab/mlsum-it
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# mbart_summarization_mlsum
|
|
|
|
| 16 |
|
| 17 |
+
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on mlsum-it for Abstractive Summarization.
|
| 18 |
|
| 19 |
+
It achieves the following results:
|
|
|
|
| 20 |
- Loss: 3.3336
|
| 21 |
- Rouge1: 19.3489
|
| 22 |
- Rouge2: 6.4028
|
|
|
|
| 24 |
- Rougelsum: 16.5387
|
| 25 |
- Gen Len: 33.5945
|
| 26 |
|
| 27 |
+
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
```python
|
| 30 |
+
from transformers import MBartTokenizer, MBartForConditionalGeneration
|
| 31 |
+
tokenizer = MBartTokenizer.from_pretrained("ARTeLab/mbart-summarization-mlsum")
|
| 32 |
+
model = MBartForConditionalGeneration.from_pretrained("ARTeLab/mbart-summarization-mlsum")
|
| 33 |
+
```
|
| 34 |
|
| 35 |
### Training hyperparameters
|
| 36 |
|
|
|
|
| 43 |
- lr_scheduler_type: linear
|
| 44 |
- num_epochs: 4.0
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
### Framework versions
|
| 47 |
|
| 48 |
- Transformers 4.15.0.dev0
|
| 49 |
- Pytorch 1.10.0+cu102
|
| 50 |
- Datasets 1.15.1
|
| 51 |
+
- Tokenizers 0.10.3
|