add sdpa fallback
Browse filesSigned-off-by: Isotr0py <[email protected]>
- modeling_ovis2_5.py +106 -6
modeling_ovis2_5.py
CHANGED
@@ -4,8 +4,6 @@ from typing import Dict, List, Optional, Tuple, Union
|
|
4 |
import PIL.Image
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
-
from flash_attn import flash_attn_varlen_func
|
8 |
-
from flash_attn.layers.rotary import apply_rotary_emb
|
9 |
from torch import Tensor, nn
|
10 |
from torch.nn import functional as F
|
11 |
from transformers import (
|
@@ -19,9 +17,16 @@ from transformers.activations import ACT2FN
|
|
19 |
from transformers.generation.utils import GenerateOutput
|
20 |
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
|
21 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
22 |
|
23 |
from .configuration_ovis2_5 import Siglip2NavitConfig, Ovis2_5_Config
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
IMAGE_PLACEHOLDER = "<image>"
|
26 |
IMAGE_PLACEHOLDER_ID = -200
|
27 |
VIDEO_PLACEHOLDER = "<video>"
|
@@ -30,6 +35,74 @@ VIDEO_PLACEHOLDER_ID = -201
|
|
30 |
VISUAL_ATOM_ID = -300
|
31 |
INDICATOR_IDS = [-301, -302, -303, -304]
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# copied from qwen2.5-vl
|
34 |
class VisionRotaryEmbedding(nn.Module):
|
35 |
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
@@ -238,14 +311,41 @@ class Siglip2Attention(nn.Module):
|
|
238 |
|
239 |
if self.use_rope:
|
240 |
cos, sin = position_embeddings
|
241 |
-
|
|
|
|
|
|
|
242 |
queries = queries.squeeze(0)
|
243 |
keys = keys.squeeze(0)
|
244 |
|
245 |
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
attn_output = self.out_proj(attn_output)
|
250 |
return attn_output
|
251 |
|
|
|
4 |
import PIL.Image
|
5 |
import numpy as np
|
6 |
import torch
|
|
|
|
|
7 |
from torch import Tensor, nn
|
8 |
from torch.nn import functional as F
|
9 |
from transformers import (
|
|
|
17 |
from transformers.generation.utils import GenerateOutput
|
18 |
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
|
19 |
from transformers.modeling_utils import PreTrainedModel
|
20 |
+
from transformers.utils import is_flash_attn_2_available
|
21 |
|
22 |
from .configuration_ovis2_5 import Siglip2NavitConfig, Ovis2_5_Config
|
23 |
|
24 |
+
|
25 |
+
if is_flash_attn_2_available():
|
26 |
+
from flash_attn import flash_attn_varlen_func
|
27 |
+
from flash_attn.layers.rotary import apply_rotary_emb
|
28 |
+
|
29 |
+
|
30 |
IMAGE_PLACEHOLDER = "<image>"
|
31 |
IMAGE_PLACEHOLDER_ID = -200
|
32 |
VIDEO_PLACEHOLDER = "<video>"
|
|
|
35 |
VISUAL_ATOM_ID = -300
|
36 |
INDICATOR_IDS = [-301, -302, -303, -304]
|
37 |
|
38 |
+
|
39 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
40 |
+
def rotate_half(x):
|
41 |
+
"""Rotates half the hidden dims of the input."""
|
42 |
+
x1 = x[..., : x.shape[-1] // 2]
|
43 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
44 |
+
return torch.cat((-x2, x1), dim=-1)
|
45 |
+
|
46 |
+
|
47 |
+
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
48 |
+
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).
|
49 |
+
|
50 |
+
Explanation:
|
51 |
+
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
52 |
+
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
53 |
+
vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately.
|
54 |
+
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
55 |
+
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
56 |
+
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
57 |
+
difference with modern LLMs.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
q (`torch.Tensor`): The query tensor.
|
61 |
+
k (`torch.Tensor`): The key tensor.
|
62 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
63 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
64 |
+
position_ids (`torch.Tensor`):
|
65 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
66 |
+
used to pass offsetted position ids when working with a KV-cache.
|
67 |
+
mrope_section(`List(int)`):
|
68 |
+
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
|
69 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
70 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
71 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
72 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
73 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
74 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
75 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
76 |
+
Returns:
|
77 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
78 |
+
"""
|
79 |
+
mrope_section = mrope_section * 2
|
80 |
+
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
81 |
+
unsqueeze_dim
|
82 |
+
)
|
83 |
+
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
84 |
+
unsqueeze_dim
|
85 |
+
)
|
86 |
+
|
87 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
88 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
89 |
+
return q_embed, k_embed
|
90 |
+
|
91 |
+
|
92 |
+
def apply_rotary_pos_emb_vision(
|
93 |
+
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
94 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
95 |
+
orig_q_dtype = q.dtype
|
96 |
+
orig_k_dtype = k.dtype
|
97 |
+
q, k = q.float(), k.float()
|
98 |
+
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
|
99 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
100 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
101 |
+
q_embed = q_embed.to(orig_q_dtype)
|
102 |
+
k_embed = k_embed.to(orig_k_dtype)
|
103 |
+
return q_embed, k_embed
|
104 |
+
|
105 |
+
|
106 |
# copied from qwen2.5-vl
|
107 |
class VisionRotaryEmbedding(nn.Module):
|
108 |
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
|
311 |
|
312 |
if self.use_rope:
|
313 |
cos, sin = position_embeddings
|
314 |
+
if is_flash_attn_2_available():
|
315 |
+
queries, keys = apply_rotary_pos_emb_flashatt(queries.unsqueeze(0), keys.unsqueeze(0), cos, sin)
|
316 |
+
else:
|
317 |
+
queries, keys = apply_rotary_pos_emb_vision(queries.unsqueeze(0), keys.unsqueeze(0), cos, sin)
|
318 |
queries = queries.squeeze(0)
|
319 |
keys = keys.squeeze(0)
|
320 |
|
321 |
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
322 |
+
if is_flash_attn_2_available():
|
323 |
+
attn_output = flash_attn_varlen_func(queries, keys, values, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
|
324 |
+
seq_length, -1
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
batch_size = cu_seqlens.shape[0] - 1
|
328 |
+
outputs = []
|
329 |
+
cu = cu_seqlens.tolist()
|
330 |
+
for i in range(batch_size):
|
331 |
+
start_idx = cu[i]
|
332 |
+
end_idx = cu[i + 1]
|
333 |
+
# Each sequence is processed independently.
|
334 |
+
q_i = queries[start_idx:end_idx].unsqueeze(0)
|
335 |
+
k_i = keys[start_idx:end_idx].unsqueeze(0)
|
336 |
+
v_i = values[start_idx:end_idx].unsqueeze(0)
|
337 |
+
# (1, seq_len, num_heads, head_dim) ->
|
338 |
+
# (1, num_heads, seq_len, head_dim)
|
339 |
+
q_i, k_i, v_i = [x.transpose(1, 2) for x in (q_i, k_i, v_i)]
|
340 |
+
output_i = F.scaled_dot_product_attention(q_i,
|
341 |
+
k_i,
|
342 |
+
v_i,
|
343 |
+
dropout_p=0.0)
|
344 |
+
# (1, num_heads, seq_len, head_dim) -> (seq_len, embed_dim)
|
345 |
+
output_i = output_i.transpose(1, 2).reshape(-1, self.embed_dim)
|
346 |
+
outputs.append(output_i)
|
347 |
+
attn_output = torch.cat(outputs, dim=0)
|
348 |
+
|
349 |
attn_output = self.out_proj(attn_output)
|
350 |
return attn_output
|
351 |
|