|  | import math | 
					
						
						|  | from typing import Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import PIL.Image | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from flash_attn import flash_attn_varlen_func | 
					
						
						|  | from flash_attn.layers.rotary import apply_rotary_emb | 
					
						
						|  | from torch import Tensor, nn | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  | from transformers import ( | 
					
						
						|  | AutoConfig, | 
					
						
						|  | AutoImageProcessor, | 
					
						
						|  | AutoModel, | 
					
						
						|  | AutoModelForCausalLM, | 
					
						
						|  | AutoTokenizer, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.generation.utils import GenerateOutput | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutputWithNoAttention | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  |  | 
					
						
						|  | from .configuration_ovis2_5 import Siglip2NavitConfig, Ovis2_5_Config | 
					
						
						|  |  | 
					
						
						|  | IMAGE_PLACEHOLDER = "<image>" | 
					
						
						|  | IMAGE_PLACEHOLDER_ID = -200 | 
					
						
						|  | VIDEO_PLACEHOLDER = "<video>" | 
					
						
						|  | VIDEO_PLACEHOLDER_ID = -201 | 
					
						
						|  |  | 
					
						
						|  | VISUAL_ATOM_ID = -300 | 
					
						
						|  | INDICATOR_IDS = [-301, -302, -303, -304] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class VisionRotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, dim: int, theta: float = 10000.0) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, seqlen: int) -> torch.Tensor: | 
					
						
						|  | seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) | 
					
						
						|  | freqs = torch.outer(seq, self.inv_freq) | 
					
						
						|  | return freqs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Siglip2VisionEmbeddings(nn.Module): | 
					
						
						|  | def __init__(self, config: Siglip2NavitConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self.patch_size = config.patch_size | 
					
						
						|  | self.image_size = config.image_size | 
					
						
						|  | self.num_patches = config.num_patches | 
					
						
						|  | self.preserve_original_pe = config.preserve_original_pe | 
					
						
						|  | self.hidden_stride = config.hidden_stride | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.num_patches > 0: | 
					
						
						|  | self.patch_embedding = nn.Linear( | 
					
						
						|  | in_features=config.num_channels * self.patch_size * self.patch_size, | 
					
						
						|  | out_features=self.embed_dim, | 
					
						
						|  | ) | 
					
						
						|  | if self.preserve_original_pe: | 
					
						
						|  | self.position_embedding_size = int(self.num_patches**0.5) | 
					
						
						|  | self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | self.patch_embedding = nn.Conv2d( | 
					
						
						|  | in_channels=config.num_channels, | 
					
						
						|  | out_channels=self.embed_dim, | 
					
						
						|  | kernel_size=self.patch_size, | 
					
						
						|  | stride=self.patch_size, | 
					
						
						|  | padding="valid", | 
					
						
						|  | ) | 
					
						
						|  | if self.preserve_original_pe: | 
					
						
						|  | self.num_patches = (self.image_size // self.patch_size) ** 2 | 
					
						
						|  | self.position_embedding_size = self.image_size // self.patch_size | 
					
						
						|  | self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def resize_positional_embeddings( | 
					
						
						|  | positional_embeddings: torch.Tensor, | 
					
						
						|  | spatial_shapes: torch.LongTensor, | 
					
						
						|  | max_length: int, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Resize positional embeddings to image-specific size and pad to a fixed size. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | positional_embeddings (`torch.Tensor`): | 
					
						
						|  | Position embeddings of shape (height, width, embed_dim) | 
					
						
						|  | spatial_shapes (`torch.LongTensor`): | 
					
						
						|  | Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to | 
					
						
						|  | max_length (`int`): | 
					
						
						|  | Maximum length of the positional embeddings to pad resized positional embeddings to | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch_size = spatial_shapes.shape[0] | 
					
						
						|  | embed_dim = positional_embeddings.shape[-1] | 
					
						
						|  | source_dtype = positional_embeddings.dtype | 
					
						
						|  |  | 
					
						
						|  | resulted_positional_embeddings = torch.empty( | 
					
						
						|  | (batch_size, max_length, embed_dim), | 
					
						
						|  | device=positional_embeddings.device, | 
					
						
						|  | dtype=source_dtype, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if positional_embeddings.device.type == "cpu": | 
					
						
						|  | positional_embeddings = positional_embeddings.to(torch.float32) | 
					
						
						|  |  | 
					
						
						|  | for i in range(batch_size): | 
					
						
						|  |  | 
					
						
						|  | height, width = spatial_shapes[i] | 
					
						
						|  | resized_embeddings = F.interpolate( | 
					
						
						|  | positional_embeddings, | 
					
						
						|  | size=(height, width), | 
					
						
						|  | mode="bilinear", | 
					
						
						|  | align_corners=False, | 
					
						
						|  | antialias=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | resized_embeddings = resized_embeddings.to(source_dtype) | 
					
						
						|  |  | 
					
						
						|  | resulted_positional_embeddings[i, : height * width] = resized_embeddings | 
					
						
						|  | resulted_positional_embeddings[i, height * width :] = resized_embeddings[0] | 
					
						
						|  |  | 
					
						
						|  | return resulted_positional_embeddings | 
					
						
						|  |  | 
					
						
						|  | def forward(self, pixel_values: torch.FloatTensor, | 
					
						
						|  | grid_thws: Optional[torch.LongTensor] = None) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | pixel_values (`torch.FloatTensor`): | 
					
						
						|  | Pixel values of shape (num_patches, num_channels * temporal_patch_size * patch_size * patch_size) | 
					
						
						|  | grid_thws: (`torch.LongTensor`): | 
					
						
						|  | grid shape (num_patches, 3) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | target_dtype = self.patch_embedding.weight.dtype | 
					
						
						|  | if isinstance(self.patch_embedding, nn.Linear): | 
					
						
						|  | patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) | 
					
						
						|  | elif isinstance(self.patch_embedding, nn.Conv2d): | 
					
						
						|  | pixel_values = pixel_values.view(-1, self.config.num_channels * self.config.temporal_patch_size, self.patch_size, | 
					
						
						|  | self.patch_size) | 
					
						
						|  | patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) | 
					
						
						|  | patch_embeds = patch_embeds.reshape(-1, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.preserve_original_pe: | 
					
						
						|  | assert grid_thws is not None | 
					
						
						|  | pos_embed_new = torch.zeros_like(patch_embeds) | 
					
						
						|  | ori_h = ori_w = self.position_embedding_size | 
					
						
						|  | positional_embeddings = self.position_embedding.weight.reshape( | 
					
						
						|  | self.position_embedding_size, self.position_embedding_size, -1 | 
					
						
						|  | ).unsqueeze(0).permute(0,3,1,2) | 
					
						
						|  |  | 
					
						
						|  | cnt = 0 | 
					
						
						|  | for t, h, w in grid_thws: | 
					
						
						|  | thw = t * h * w | 
					
						
						|  | pe = F.interpolate(positional_embeddings, size=(h, w), mode='bicubic', align_corners=False) | 
					
						
						|  | pe = pe.permute(0, 2, 3, 1).reshape(1, h * w, -1) | 
					
						
						|  | pe = pe[0].repeat(t, 1) | 
					
						
						|  | pe = pe.reshape(t, h // self.hidden_stride, self.hidden_stride, w // self.hidden_stride, | 
					
						
						|  | self.hidden_stride, -1) | 
					
						
						|  | pe = pe.permute(0, 1, 3, 2, 4, 5).reshape(thw, -1) | 
					
						
						|  | pos_embed_new[cnt:cnt + thw] = pe | 
					
						
						|  | cnt += thw | 
					
						
						|  | patch_embeds = patch_embeds + pos_embed_new | 
					
						
						|  |  | 
					
						
						|  | return patch_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb_flashatt( | 
					
						
						|  | q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | cos = cos.chunk(2, dim=-1)[0].contiguous() | 
					
						
						|  | sin = sin.chunk(2, dim=-1)[0].contiguous() | 
					
						
						|  | q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q) | 
					
						
						|  | k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Siglip2Attention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.embed_dim // self.num_heads | 
					
						
						|  | if self.head_dim * self.num_heads != self.embed_dim: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | 
					
						
						|  | f" {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  | self.scale = self.head_dim**-0.5 | 
					
						
						|  | self.dropout = config.attention_dropout | 
					
						
						|  | self.is_causal = False | 
					
						
						|  |  | 
					
						
						|  | self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | 
					
						
						|  | self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | 
					
						
						|  | self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | 
					
						
						|  | self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | self.use_rope = config.use_rope | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | cu_seqlens: torch.Tensor, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: | 
					
						
						|  | """Input shape: Batch x Time x Channel""" | 
					
						
						|  |  | 
					
						
						|  | seq_length, embed_dim = hidden_states.shape | 
					
						
						|  |  | 
					
						
						|  | queries = self.q_proj(hidden_states) | 
					
						
						|  | keys = self.k_proj(hidden_states) | 
					
						
						|  | values = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | queries = queries.view(seq_length, self.num_heads, self.head_dim) | 
					
						
						|  | keys = keys.view(seq_length, self.num_heads, self.head_dim) | 
					
						
						|  | values = values.view(seq_length, self.num_heads, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if self.use_rope: | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | queries, keys = apply_rotary_pos_emb_flashatt(queries.unsqueeze(0), keys.unsqueeze(0), cos, sin) | 
					
						
						|  | queries = queries.squeeze(0) | 
					
						
						|  | keys = keys.squeeze(0) | 
					
						
						|  |  | 
					
						
						|  | max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() | 
					
						
						|  | attn_output = flash_attn_varlen_func(queries, keys, values, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( | 
					
						
						|  | seq_length, -1 | 
					
						
						|  | ) | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  | class Siglip2MLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.activation_fn = ACT2FN[config.hidden_act] | 
					
						
						|  | self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | 
					
						
						|  | self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | hidden_states = self.fc1(hidden_states) | 
					
						
						|  | hidden_states = self.activation_fn(hidden_states) | 
					
						
						|  | hidden_states = self.fc2(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Siglip2EncoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: Siglip2NavitConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | 
					
						
						|  | self.self_attn = Siglip2Attention(config) | 
					
						
						|  | self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | 
					
						
						|  | self.mlp = Siglip2MLP(config) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | cu_seqlens: torch.Tensor, | 
					
						
						|  | position_embeddings: torch.Tensor | 
					
						
						|  | ) -> tuple[torch.FloatTensor]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): | 
					
						
						|  | Input to the layer of shape `(batch, seq_len, embed_dim)`. | 
					
						
						|  | attention_mask (`torch.FloatTensor`): | 
					
						
						|  | Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. | 
					
						
						|  | output_attentions (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | """ | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.layer_norm1(hidden_states) | 
					
						
						|  | hidden_states = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | cu_seqlens=cu_seqlens, | 
					
						
						|  | position_embeddings=position_embeddings | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.layer_norm2(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  | class Siglip2Encoder(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | 
					
						
						|  | [`Siglip2EncoderLayer`]. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: Siglip2NavitConfig | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Siglip2NavitConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layers = nn.ModuleList([Siglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.rotary_pos_emb = VisionRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2) | 
					
						
						|  | self.patch_size = config.patch_size | 
					
						
						|  | self.hidden_stride = config.hidden_stride | 
					
						
						|  | self.window_size = config.window_size | 
					
						
						|  | self.spatial_merge_unit = config.hidden_stride * config.hidden_stride | 
					
						
						|  | self.fullatt_block_indexes = None if config.fullatt_block_indexes is None else [int(i) for i in config.fullatt_block_indexes.split('|')] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rot_pos_emb(self, grid_thw): | 
					
						
						|  | pos_ids = [] | 
					
						
						|  | for t, h, w in grid_thw: | 
					
						
						|  | hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) | 
					
						
						|  | hpos_ids = hpos_ids.reshape( | 
					
						
						|  | h // self.hidden_stride, | 
					
						
						|  | self.hidden_stride, | 
					
						
						|  | w // self.hidden_stride, | 
					
						
						|  | self.hidden_stride, | 
					
						
						|  | ) | 
					
						
						|  | hpos_ids = hpos_ids.permute(0, 2, 1, 3) | 
					
						
						|  | hpos_ids = hpos_ids.flatten() | 
					
						
						|  |  | 
					
						
						|  | wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) | 
					
						
						|  | wpos_ids = wpos_ids.reshape( | 
					
						
						|  | h // self.hidden_stride, | 
					
						
						|  | self.hidden_stride, | 
					
						
						|  | w // self.hidden_stride, | 
					
						
						|  | self.hidden_stride, | 
					
						
						|  | ) | 
					
						
						|  | wpos_ids = wpos_ids.permute(0, 2, 1, 3) | 
					
						
						|  | wpos_ids = wpos_ids.flatten() | 
					
						
						|  | pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) | 
					
						
						|  | pos_ids = torch.cat(pos_ids, dim=0) | 
					
						
						|  | max_grid_size = grid_thw[:, 1:].max() | 
					
						
						|  | rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) | 
					
						
						|  | rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) | 
					
						
						|  | return rotary_pos_emb | 
					
						
						|  |  | 
					
						
						|  | def get_window_index(self, grid_thw): | 
					
						
						|  | window_index: list = [] | 
					
						
						|  | cu_window_seqlens: list = [0] | 
					
						
						|  | window_index_id = 0 | 
					
						
						|  | vit_merger_window_size = self.window_size // self.hidden_stride // self.patch_size | 
					
						
						|  |  | 
					
						
						|  | for grid_t, grid_h, grid_w in grid_thw: | 
					
						
						|  | llm_grid_h, llm_grid_w = ( | 
					
						
						|  | grid_h // self.hidden_stride, | 
					
						
						|  | grid_w // self.hidden_stride, | 
					
						
						|  | ) | 
					
						
						|  | index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w) | 
					
						
						|  | pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size | 
					
						
						|  | pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size | 
					
						
						|  | num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size | 
					
						
						|  | num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size | 
					
						
						|  | index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100) | 
					
						
						|  | index_padded = index_padded.reshape( | 
					
						
						|  | grid_t, | 
					
						
						|  | num_windows_h, | 
					
						
						|  | vit_merger_window_size, | 
					
						
						|  | num_windows_w, | 
					
						
						|  | vit_merger_window_size, | 
					
						
						|  | ) | 
					
						
						|  | index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape( | 
					
						
						|  | grid_t, | 
					
						
						|  | num_windows_h * num_windows_w, | 
					
						
						|  | vit_merger_window_size, | 
					
						
						|  | vit_merger_window_size, | 
					
						
						|  | ) | 
					
						
						|  | seqlens = (index_padded != -100).sum([2, 3]).reshape(-1) | 
					
						
						|  | index_padded = index_padded.reshape(-1) | 
					
						
						|  | index_new = index_padded[index_padded != -100] | 
					
						
						|  | window_index.append(index_new + window_index_id) | 
					
						
						|  | cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1] | 
					
						
						|  | cu_window_seqlens.extend(cu_seqlens_tmp.tolist()) | 
					
						
						|  | window_index_id += (grid_t * llm_grid_h * llm_grid_w).item() | 
					
						
						|  | window_index = torch.cat(window_index, dim=0) | 
					
						
						|  |  | 
					
						
						|  | return window_index, cu_window_seqlens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | grid_thws: torch.Tensor, | 
					
						
						|  | output_hidden_states: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | 
					
						
						|  | This is useful if you want more control over how to convert `input_ids` indices into associated vectors | 
					
						
						|  | than the model's internal embedding lookup matrix. | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | 
					
						
						|  | for more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | rotary_pos_emb = self.rot_pos_emb(grid_thws) | 
					
						
						|  | window_index, cu_window_seqlens = self.get_window_index(grid_thws) | 
					
						
						|  | cu_window_seqlens = torch.tensor( | 
					
						
						|  | cu_window_seqlens, | 
					
						
						|  | device=inputs_embeds.device, | 
					
						
						|  | dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32, | 
					
						
						|  | ) | 
					
						
						|  | cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens) | 
					
						
						|  |  | 
					
						
						|  | seq_len, _ = inputs_embeds.size() | 
					
						
						|  | inputs_embeds = inputs_embeds.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) | 
					
						
						|  | inputs_embeds = inputs_embeds[window_index, :, :] | 
					
						
						|  | inputs_embeds = inputs_embeds.reshape(seq_len, -1) | 
					
						
						|  | rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) | 
					
						
						|  | rotary_pos_emb = rotary_pos_emb[window_index, :, :] | 
					
						
						|  | rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) | 
					
						
						|  | emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) | 
					
						
						|  | position_embeddings = (emb.cos(), emb.sin()) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens = torch.repeat_interleave(grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]).cumsum( | 
					
						
						|  | dim=0, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32, | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) | 
					
						
						|  |  | 
					
						
						|  | reverse_indices = torch.argsort(window_index) | 
					
						
						|  | encoder_states = () if output_hidden_states else None | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  | for index, block in enumerate(self.layers): | 
					
						
						|  | if self.fullatt_block_indexes is None or index in self.fullatt_block_indexes: | 
					
						
						|  | cu_seqlens_tmp = cu_seqlens | 
					
						
						|  | else: | 
					
						
						|  | cu_seqlens_tmp = cu_window_seqlens | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | hidden_states = self._gradient_checkpointing_func(block.__call__, hidden_states, cu_seqlens_tmp, position_embeddings) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = block(hidden_states, cu_seqlens_tmp, position_embeddings) | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | hidden_states_ = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) | 
					
						
						|  | encoder_states += (hidden_states_[reverse_indices, :].reshape(seq_len, -1),) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) | 
					
						
						|  | hidden_states = hidden_states[reverse_indices, :].reshape(seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, encoder_states | 
					
						
						|  |  | 
					
						
						|  | class Siglip2VisionTransformer(nn.Module): | 
					
						
						|  | def __init__(self, config: Siglip2NavitConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | embed_dim = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.embeddings = Siglip2VisionEmbeddings(config) | 
					
						
						|  | self.encoder = Siglip2Encoder(config) | 
					
						
						|  | self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | 
					
						
						|  | self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values: torch.FloatTensor, | 
					
						
						|  | grid_thws: torch.LongTensor, | 
					
						
						|  | output_hidden_states: Optional[bool] = True, | 
					
						
						|  | return_dict: Optional[bool] = True, | 
					
						
						|  | ) -> Union[ | 
					
						
						|  | Tuple[torch.Tensor], | 
					
						
						|  | Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], | 
					
						
						|  | BaseModelOutputWithNoAttention, | 
					
						
						|  | ]: | 
					
						
						|  | r""" | 
					
						
						|  | spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`): | 
					
						
						|  | Tensor containing the spatial dimensions (height, width) of the input images. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.embeddings(pixel_values, grid_thws) | 
					
						
						|  |  | 
					
						
						|  | last_hidden_state, hidden_states = self.encoder(hidden_states, grid_thws, output_hidden_states) | 
					
						
						|  | last_hidden_state = self.post_layernorm(last_hidden_state) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (last_hidden_state,) | 
					
						
						|  | output += (hidden_states,) if output_hidden_states else () | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithNoAttention( | 
					
						
						|  | last_hidden_state=last_hidden_state, | 
					
						
						|  | hidden_states=hidden_states | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class Siglip2PreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = Siglip2NavitConfig | 
					
						
						|  | base_model_prefix = "siglip2_navit" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  | _no_split_modules = [ | 
					
						
						|  | "Siglip2VisionEmbeddings", | 
					
						
						|  | "Siglip2EncoderLayer", | 
					
						
						|  | ] | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = False | 
					
						
						|  | _supports_flex_attn = False | 
					
						
						|  | _supports_attention_backend = True | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Siglip2NavitModel(Siglip2PreTrainedModel): | 
					
						
						|  | config_class = Siglip2NavitConfig | 
					
						
						|  | main_input_name = "pixel_values" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Siglip2NavitConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.vision_model = Siglip2VisionTransformer(config) | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self) -> nn.Module: | 
					
						
						|  | return self.vision_model.embeddings.patch_embedding | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values: torch.FloatTensor, | 
					
						
						|  | grid_thws: torch.LongTensor, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[ | 
					
						
						|  | Tuple[torch.Tensor], | 
					
						
						|  | Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], | 
					
						
						|  | BaseModelOutputWithNoAttention, | 
					
						
						|  | ]: | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states is None: | 
					
						
						|  | output_hidden_states = self.config.output_hidden_states | 
					
						
						|  | if return_dict is None: | 
					
						
						|  | return_dict = self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | return self.vision_model( | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | grid_thws=grid_thws, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class VisualEmbedding(torch.nn.Embedding): | 
					
						
						|  | """ | 
					
						
						|  | A visual embedding layer that can handle both discrete token IDs (long) and continuous | 
					
						
						|  | soft-token probabilities (float). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def forward(self, visual_tokens: Tensor) -> Tensor: | 
					
						
						|  | if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]: | 
					
						
						|  | return super().forward(visual_tokens) | 
					
						
						|  |  | 
					
						
						|  | return torch.matmul(visual_tokens, self.weight) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class VisualTokenizer(torch.nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Tokenizes images or videos into a sequence of continuous visual tokens. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, vit, visual_vocab_size, image_processor_name_or_path, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  | self.vit = vit | 
					
						
						|  | self.image_processor = AutoImageProcessor.from_pretrained(image_processor_name_or_path, do_center_crop=False) | 
					
						
						|  | head_dim = visual_vocab_size - len(INDICATOR_IDS) | 
					
						
						|  | self.head = torch.nn.Sequential( | 
					
						
						|  | torch.nn.Linear(self.vit.config.hidden_size * self.vit.config.hidden_stride ** 2, head_dim, bias=False), | 
					
						
						|  | torch.nn.LayerNorm(head_dim) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _encode(self, pixel_values, grid_thws): | 
					
						
						|  | output = self.vit(pixel_values, grid_thws, output_hidden_states=True, return_dict=True) | 
					
						
						|  | features = output.hidden_states[-1] | 
					
						
						|  | seq_len, _ = features.shape | 
					
						
						|  | features = features.reshape(seq_len // (self.vit.config.hidden_stride ** 2), -1) | 
					
						
						|  | return features | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def smart_resize( | 
					
						
						|  | height: int, width: int, factor: int = 28, min_pixels: int = 448 * 448, max_pixels: int = 1344 * 1792 | 
					
						
						|  | ): | 
					
						
						|  | """Rescales the image so that the following conditions are met: | 
					
						
						|  | 1. Both dimensions are divisible by 'factor'. | 
					
						
						|  | 2. The total number of pixels is within ['min_pixels', 'max_pixels']. | 
					
						
						|  | 3. The aspect ratio is maintained as closely as possible. | 
					
						
						|  | """ | 
					
						
						|  | if height < factor or width < factor: | 
					
						
						|  | if height < width: | 
					
						
						|  | width = round(factor / height * width) | 
					
						
						|  | height = factor | 
					
						
						|  | else: | 
					
						
						|  | height = round(factor / width * height) | 
					
						
						|  | width = factor | 
					
						
						|  |  | 
					
						
						|  | elif max(height, width) / min(height, width) > 200: | 
					
						
						|  | if height > width: | 
					
						
						|  | height = 200 * width | 
					
						
						|  | else: | 
					
						
						|  | width = 200 * height | 
					
						
						|  |  | 
					
						
						|  | h_bar = round(height / factor) * factor | 
					
						
						|  | w_bar = round(width / factor) * factor | 
					
						
						|  | if h_bar * w_bar > max_pixels: | 
					
						
						|  | beta = math.sqrt((height * width) / max_pixels) | 
					
						
						|  | h_bar = math.floor(height / beta / factor) * factor | 
					
						
						|  | w_bar = math.floor(width / beta / factor) * factor | 
					
						
						|  | elif h_bar * w_bar < min_pixels: | 
					
						
						|  | beta = math.sqrt(min_pixels / (height * width)) | 
					
						
						|  | h_bar = math.ceil(height * beta / factor) * factor | 
					
						
						|  | w_bar = math.ceil(width * beta / factor) * factor | 
					
						
						|  | return h_bar, w_bar | 
					
						
						|  |  | 
					
						
						|  | def preprocess( | 
					
						
						|  | self, | 
					
						
						|  | image: Optional[PIL.Image.Image] = None, | 
					
						
						|  | video: Optional[List[PIL.Image.Image]] = None, | 
					
						
						|  | min_pixels: Optional[int] = None, | 
					
						
						|  | max_pixels: Optional[int] = None | 
					
						
						|  | ): | 
					
						
						|  | patch_size = self.vit.config.patch_size | 
					
						
						|  | temporal_patch_size = self.vit.config.temporal_patch_size | 
					
						
						|  | hidden_stride = self.vit.config.hidden_stride | 
					
						
						|  | assert (image is None) ^ (video is None), "Invalid input: expect either image or video" | 
					
						
						|  | if image is not None: | 
					
						
						|  | images = [image] | 
					
						
						|  | else: | 
					
						
						|  | images = video | 
					
						
						|  | images = [image.convert("RGB") if image.mode != 'RGB' else image for image in images] | 
					
						
						|  | width, height = images[0].size | 
					
						
						|  | processed_images = [] | 
					
						
						|  | for image in images: | 
					
						
						|  | resized_height, resized_width = self.smart_resize( | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | factor=patch_size * hidden_stride, | 
					
						
						|  | min_pixels=min_pixels, | 
					
						
						|  | max_pixels=max_pixels, | 
					
						
						|  | ) | 
					
						
						|  | new_size = dict(height=resized_height, width=resized_width) | 
					
						
						|  | new_image = self.image_processor.preprocess(image, size=new_size, return_tensors="np")['pixel_values'][0] | 
					
						
						|  | processed_images.append(new_image) | 
					
						
						|  |  | 
					
						
						|  | patches = np.array(processed_images) | 
					
						
						|  | if patches.shape[0] % temporal_patch_size != 0: | 
					
						
						|  | repeats = np.repeat(patches[-1][np.newaxis], temporal_patch_size - 1, axis=0) | 
					
						
						|  | patches = np.concatenate([patches, repeats], axis=0) | 
					
						
						|  | channel = patches.shape[1] | 
					
						
						|  | grid_t = patches.shape[0] // temporal_patch_size | 
					
						
						|  | grid_h, grid_w = resized_height // patch_size, resized_width // patch_size | 
					
						
						|  | grid_thw = torch.tensor([[grid_t, grid_h, grid_w]]) | 
					
						
						|  |  | 
					
						
						|  | patches = patches.reshape( | 
					
						
						|  | grid_t, temporal_patch_size, channel, | 
					
						
						|  | grid_h // hidden_stride, hidden_stride, patch_size, | 
					
						
						|  | grid_w // hidden_stride, hidden_stride, patch_size, | 
					
						
						|  | ) | 
					
						
						|  | patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8) | 
					
						
						|  | flatten_patches = patches.reshape( | 
					
						
						|  | grid_t * grid_h * grid_w, channel * temporal_patch_size * patch_size * patch_size | 
					
						
						|  | ) | 
					
						
						|  | flatten_patches = torch.tensor(flatten_patches) | 
					
						
						|  |  | 
					
						
						|  | return flatten_patches, grid_thw | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, pixel_values, grid_thws | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | features = self._encode(pixel_values, grid_thws) | 
					
						
						|  | logits = self.head(features) | 
					
						
						|  | tokens = torch.softmax(logits, dim=-1, dtype=torch.float32).to(logits.dtype) | 
					
						
						|  |  | 
					
						
						|  | token_len, _ = tokens.shape | 
					
						
						|  | padding_tensor = torch.zeros(size=(token_len, len(INDICATOR_IDS)), | 
					
						
						|  | dtype=tokens.dtype, | 
					
						
						|  | device=tokens.device, | 
					
						
						|  | layout=tokens.layout, | 
					
						
						|  | requires_grad=False) | 
					
						
						|  | tokens = torch.cat((tokens, padding_tensor), dim=1) | 
					
						
						|  | return tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class OvisPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = Ovis2_5_Config | 
					
						
						|  | base_model_prefix = "ovis2_5" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Ovis2_5(OvisPreTrainedModel): | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Ovis2_5_Config, *inputs, **kwargs): | 
					
						
						|  | super().__init__(config, *inputs, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.llm = AutoModelForCausalLM.from_config(self.config.llm_config) | 
					
						
						|  | assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch" | 
					
						
						|  | self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path) | 
					
						
						|  | self.visual_tokenizer = VisualTokenizer(vit=AutoModel.from_config(self.config.vit_config), | 
					
						
						|  | visual_vocab_size=self.config.visual_vocab_size, | 
					
						
						|  | image_processor_name_or_path=self.config.name_or_path) | 
					
						
						|  |  | 
					
						
						|  | self.vte = VisualEmbedding(self.config.visual_vocab_size, self.config.hidden_size, | 
					
						
						|  | device=self.visual_tokenizer.vit.device, dtype=self.visual_tokenizer.vit.dtype) | 
					
						
						|  | indicator_token_indices = torch.arange( | 
					
						
						|  | self.config.visual_vocab_size - len(INDICATOR_IDS), | 
					
						
						|  | self.config.visual_vocab_size, | 
					
						
						|  | dtype=torch.long | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer("indicator_token_indices", indicator_token_indices, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def _merge_modules(modules_list: tuple): | 
					
						
						|  | merged_modules = [] | 
					
						
						|  | for modules in modules_list: | 
					
						
						|  | merged_modules.extend(modules if modules else []) | 
					
						
						|  | return merged_modules | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._no_split_modules = _merge_modules( | 
					
						
						|  | (self.llm._no_split_modules, self.visual_tokenizer.vit._no_split_modules)) | 
					
						
						|  | self._skip_keys_device_placement = self.llm._skip_keys_device_placement | 
					
						
						|  | self._keep_in_fp32_modules = _merge_modules( | 
					
						
						|  | (self.llm._keep_in_fp32_modules, self.visual_tokenizer.vit._keep_in_fp32_modules)) | 
					
						
						|  | self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.vit.is_parallelizable)) | 
					
						
						|  | self.supports_gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  | def tie_weights(self): | 
					
						
						|  | self.llm.tie_weights() | 
					
						
						|  |  | 
					
						
						|  | def get_wte(self): | 
					
						
						|  | return self.llm.get_input_embeddings() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.Tensor, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | pixel_values: Optional[torch.Tensor], | 
					
						
						|  | grid_thws: Optional[torch.Tensor], | 
					
						
						|  | labels: Optional[torch.Tensor] = None, | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  | inputs_embeds = self.merge_multimodal( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | grid_thws=grid_thws, | 
					
						
						|  | ) | 
					
						
						|  | return self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | def merge_multimodal( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.Tensor, | 
					
						
						|  | pixel_values: Optional[torch.Tensor], | 
					
						
						|  | grid_thws: Optional[torch.Tensor], | 
					
						
						|  | ): | 
					
						
						|  | placeholder_token_mask = torch.lt(input_ids, 0) | 
					
						
						|  | multimodal_embeds = self.get_wte()(torch.masked_fill(input_ids, placeholder_token_mask, 0)) | 
					
						
						|  |  | 
					
						
						|  | if pixel_values is not None: | 
					
						
						|  | visual_indicator_embeds = self.vte(self.indicator_token_indices).to( | 
					
						
						|  | dtype=multimodal_embeds.dtype, device=multimodal_embeds.device | 
					
						
						|  | ) | 
					
						
						|  | visual_tokens = self.visual_tokenizer(pixel_values, grid_thws) | 
					
						
						|  | visual_embeds = self.vte(visual_tokens).to(dtype=multimodal_embeds.dtype, device=multimodal_embeds.device) | 
					
						
						|  |  | 
					
						
						|  | for i, indicator_id in enumerate(INDICATOR_IDS): | 
					
						
						|  | multimodal_embeds[input_ids == indicator_id] = visual_indicator_embeds[i] | 
					
						
						|  | multimodal_embeds[input_ids == VISUAL_ATOM_ID] = visual_embeds | 
					
						
						|  |  | 
					
						
						|  | return multimodal_embeds | 
					
						
						|  |  | 
					
						
						|  | def _merge_inputs( | 
					
						
						|  | self, raw_input_ids, placeholder_id, grid_thws, indicator_begin_id, indicator_end_id | 
					
						
						|  | ): | 
					
						
						|  | input_ids = [] | 
					
						
						|  | prev_index = 0 | 
					
						
						|  | placeholder_indexes = [i for i, v in enumerate(raw_input_ids) if v == placeholder_id] | 
					
						
						|  | for placeholder_index, grid_thw in zip(placeholder_indexes, grid_thws): | 
					
						
						|  | input_ids.extend(raw_input_ids[prev_index:placeholder_index]) | 
					
						
						|  | num_image_atoms = grid_thw.prod().item() | 
					
						
						|  | num_image_atoms //= self.visual_tokenizer.vit.config.hidden_stride ** 2 | 
					
						
						|  | num_image_atoms //= self.visual_tokenizer.vit.config.temporal_patch_size | 
					
						
						|  | input_ids.extend([indicator_begin_id] + [VISUAL_ATOM_ID] * num_image_atoms + [indicator_end_id]) | 
					
						
						|  | prev_index = placeholder_index + 1 | 
					
						
						|  | input_ids.extend(raw_input_ids[prev_index:]) | 
					
						
						|  | return input_ids | 
					
						
						|  |  | 
					
						
						|  | def _tokenize_with_visual_placeholder(self, text): | 
					
						
						|  | placeholder = VIDEO_PLACEHOLDER if VIDEO_PLACEHOLDER in text else IMAGE_PLACEHOLDER | 
					
						
						|  | placeholder_id = VIDEO_PLACEHOLDER_ID if VIDEO_PLACEHOLDER in text else IMAGE_PLACEHOLDER_ID | 
					
						
						|  | chunks = [self.text_tokenizer(chunk, add_special_tokens=False).input_ids for chunk in text.split(placeholder)] | 
					
						
						|  | input_ids = chunks[0] | 
					
						
						|  | for chunk in chunks[1:]: | 
					
						
						|  | input_ids.append(placeholder_id) | 
					
						
						|  | input_ids.extend(chunk) | 
					
						
						|  | return input_ids | 
					
						
						|  |  | 
					
						
						|  | def preprocess_inputs( | 
					
						
						|  | self, | 
					
						
						|  | messages: List[Union[str, Dict]], | 
					
						
						|  | min_pixels=448 * 448, | 
					
						
						|  | max_pixels=1344 * 1792, | 
					
						
						|  | add_generation_prompt=True, | 
					
						
						|  | enable_thinking=False | 
					
						
						|  | ): | 
					
						
						|  | text = self.text_tokenizer.apply_chat_template( | 
					
						
						|  | messages, | 
					
						
						|  | tokenize=False, | 
					
						
						|  | add_generation_prompt=add_generation_prompt, | 
					
						
						|  | enable_thinking=enable_thinking | 
					
						
						|  | ) | 
					
						
						|  | input_ids = self._tokenize_with_visual_placeholder(text) | 
					
						
						|  | images = [] | 
					
						
						|  | videos = [] | 
					
						
						|  | for message in messages: | 
					
						
						|  | content = message["content"] | 
					
						
						|  | if isinstance(content, list): | 
					
						
						|  | images.extend([item["image"] for item in content if item.get("image") is not None]) | 
					
						
						|  | videos.extend([item["video"] for item in content if item.get("video") is not None]) | 
					
						
						|  | if images and videos: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Multiple visual input data types detected (both image and video provided). " | 
					
						
						|  | "This model supports only one type of visual input data at a time. " | 
					
						
						|  | "Please provide either image or video, but not both." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pixel_values, grid_thws = None, None | 
					
						
						|  | if images: | 
					
						
						|  | pixel_values, grid_thws = zip( | 
					
						
						|  | *(self.visual_tokenizer.preprocess(image=image, min_pixels=min_pixels, max_pixels=max_pixels) | 
					
						
						|  | for image in images) | 
					
						
						|  | ) | 
					
						
						|  | input_ids = self._merge_inputs( | 
					
						
						|  | input_ids, IMAGE_PLACEHOLDER_ID, grid_thws, INDICATOR_IDS[0], INDICATOR_IDS[1] | 
					
						
						|  | ) | 
					
						
						|  | pixel_values = torch.cat(pixel_values, dim=0) | 
					
						
						|  | grid_thws = torch.cat(grid_thws, dim=0) | 
					
						
						|  | elif videos: | 
					
						
						|  | assert len(videos) == 1, "only support single video" | 
					
						
						|  | pixel_values, grid_thws = self.visual_tokenizer.preprocess( | 
					
						
						|  | video=videos[0], min_pixels=min_pixels, max_pixels=max_pixels | 
					
						
						|  | ) | 
					
						
						|  | input_ids = self._merge_inputs( | 
					
						
						|  | input_ids, VIDEO_PLACEHOLDER_ID, grid_thws, INDICATOR_IDS[2], INDICATOR_IDS[3] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | return input_ids, pixel_values, grid_thws | 
					
						
						|  |  | 
					
						
						|  | def generate( | 
					
						
						|  | self, | 
					
						
						|  | inputs: Optional[torch.Tensor] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[GenerateOutput, torch.LongTensor]: | 
					
						
						|  | attention_mask = torch.ne(inputs, self.text_tokenizer.pad_token_id).to(device=inputs.device) | 
					
						
						|  | inputs_embeds = self.merge_multimodal( | 
					
						
						|  | input_ids=inputs, | 
					
						
						|  | pixel_values=kwargs.pop('pixel_values', None), | 
					
						
						|  | grid_thws=kwargs.pop('grid_thws', None) | 
					
						
						|  | ) | 
					
						
						|  | enable_thinking = kwargs.pop('enable_thinking', False) | 
					
						
						|  | enable_thinking_budget = kwargs.pop('enable_thinking_budget', False) | 
					
						
						|  | thinking_budget = kwargs.pop('thinking_budget', 1024) | 
					
						
						|  |  | 
					
						
						|  | if enable_thinking and enable_thinking_budget: | 
					
						
						|  | actual_max_new_tokens = kwargs['max_new_tokens'] | 
					
						
						|  | kwargs['max_new_tokens'] = thinking_budget | 
					
						
						|  | generated_ids = self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs) | 
					
						
						|  | output_ids = generated_ids | 
					
						
						|  | output_ids_list = generated_ids[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if 151645 not in output_ids_list: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if 151668 not in output_ids_list: | 
					
						
						|  | early_stopping_text = "\n\nConsidering the limited time by the user, I have to give the solution based on the thinking directly now.\n</think>\n\n" | 
					
						
						|  | early_stopping_ids = self.text_tokenizer(early_stopping_text, return_tensors="pt", return_attention_mask=False).input_ids.to(inputs.device) | 
					
						
						|  | input_ids_appendent = torch.cat([output_ids, early_stopping_ids], dim=-1) | 
					
						
						|  | kwargs['streamer'].put(early_stopping_ids) if 'streamer' in kwargs else None | 
					
						
						|  | else: | 
					
						
						|  | input_ids_appendent = output_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_inputs = torch.cat([inputs, input_ids_appendent], dim=-1) | 
					
						
						|  | attention_mask = torch.ne(new_inputs, self.text_tokenizer.pad_token_id).to(device=inputs.device) | 
					
						
						|  | inputs_embeds_appendent = self.merge_multimodal( | 
					
						
						|  | input_ids=input_ids_appendent, | 
					
						
						|  | pixel_values=None, | 
					
						
						|  | grid_thws=None | 
					
						
						|  | ) | 
					
						
						|  | new_inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_appendent], dim=-2) | 
					
						
						|  |  | 
					
						
						|  | kwargs['max_new_tokens'] = inputs_embeds.size(-2) + actual_max_new_tokens - new_inputs_embeds.size(-2) | 
					
						
						|  | generated_ids2 = self.llm.generate(inputs=None, inputs_embeds=new_inputs_embeds, attention_mask=attention_mask, **kwargs) | 
					
						
						|  | kwargs['streamer'].manual_end() if 'streamer' in kwargs else None | 
					
						
						|  | return torch.cat([input_ids_appendent, generated_ids2], dim=-1) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | kwargs['streamer'].manual_end() if 'streamer' in kwargs else None | 
					
						
						|  | return generated_ids | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | generated_ids = self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs) | 
					
						
						|  | kwargs['streamer'].manual_end() if 'streamer' in kwargs else None | 
					
						
						|  | return generated_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | AutoConfig.register('siglip2_navit', Siglip2NavitConfig) | 
					
						
						|  | AutoModel.register(Siglip2NavitConfig, Siglip2NavitModel) | 
					
						
						|  | AutoConfig.register("ovis2_5", Ovis2_5_Config) | 
					
						
						|  | AutoModelForCausalLM.register(Ovis2_5_Config, Ovis2_5) | 
					
						
						|  |  |