Update README.md (#1)
Browse files- Update README.md (9e9f34302a407e2bd3ad6f823166f6692db2254a)
Co-authored-by: Jang <[email protected]>
README.md
CHANGED
@@ -7,15 +7,16 @@ tags:
|
|
7 |
- EXAONEPath-1.5
|
8 |
- pathology
|
9 |
---
|
10 |
-
|
11 |
-
*A purpose-built upgrade of **EXAONE Path 1.5
|
12 |
|
13 |
## Introduction
|
14 |
-
|
|
|
15 |
|
16 |
The pipeline still unfolds in two stages:
|
17 |
|
18 |
-
1. **Patch-wise feature extraction** – Each WSI is tiled into 256 × 256 px patches, which are embedded into 768-dimensional vectors using the frozen **[EXAONE Path
|
19 |
2. **Slide-level aggregation** – The patch embeddings are aggregated using a Vision Transformer, producing a unified slide-level representation that a lightweight classification head transforms into task-specific probabilities.
|
20 |
|
21 |
---
|
@@ -69,19 +70,19 @@ python inference.py --svs_path ./samples/wsis/1/1.svs
|
|
69 |
|
70 |
### Model Performance Comparison
|
71 |
|
72 |
-
| Metric (AUC) / Task | Titan (Conch v1.5 + iBot, image-text) | PRISM (virchow + perceiver, image-text) | CHIEF (CTransPath + CLAM, image-text, WSI-contrastive) | Prov-GigaPath (GigaPath + LongNet, image-only, mask-prediction) | UNI2-h + CLAM (image-only) |
|
73 |
-
|
74 |
-
| **CRC-MSI** | 0.9370 | 0.9432 | 0.9273 | 0.9541 | <u>0.9808</u> |
|
75 |
-
|
76 |
-
| LUAD-EGFR-mut | 0.8197 | 0.8152 | 0.7691 | 0.7623 | 0.8577 | 0.7607 |
|
77 |
-
| LUAD-KRAS-mut | 0.5405 | 0.6299 | 0.4676 | 0.5110 | 0.4690 | 0.5480 |
|
78 |
-
| BRCA-ER | 0.9343 | 0.8998 | 0.9115 | 0.9186 | 0.9454 | 0.9096 |
|
79 |
-
| BRCA-PR | 0.8804 | 0.8613 | 0.8470 | 0.8595 | 0.8770 | 0.8215 |
|
80 |
-
| BRCA-HER2 | 0.8046 | 0.8154 | 0.7822 | 0.7891 | 0.8322 | 0.7811 |
|
81 |
-
| BRCA-TP53 | 0.7879 | 0.8415 | 0.7879 | 0.7388 | 0.8080 | 0.6607 |
|
82 |
-
| BRCA-PIK3CA | 0.7577 | 0.8929 | 0.7015 | 0.7347 | 0.8571 | 0.7066 |
|
83 |
-
| RCC-PBRM1 | 0.6383 | 0.5570 | 0.5129 | 0.5270 | 0.5011 | 0.4445 |
|
84 |
-
| RCC-BAP1 | 0.7188 | 0.7690 | 0.7310 | 0.6970 | 0.7160 | 0.7337 |
|
85 |
-
| COAD-KRAS | 0.7642 | 0.7443 | 0.6989 | 0.8153 | 0.9432 | 0.6790 |
|
86 |
-
| COAD-TP53 | 0.8889 | 0.8160 | 0.7014 | 0.7118 | 0.7830 | 0.8785 |
|
87 |
-
| <span style="color:red">**Average**</span> | 0.7817 | 0.7869 | 0.7299 | 0.7457 | <u>0.7876</u> |
|
|
|
7 |
- EXAONEPath-1.5
|
8 |
- pathology
|
9 |
---
|
10 |
+
<!--# EXAONE Path for CRCMSI – CRCMSI-centric Whole-Slide Image Classifier
|
11 |
+
*A purpose-built upgrade of **EXAONE Path 1.5***-->
|
12 |
|
13 |
## Introduction
|
14 |
+
<!--**EXAONE Path for CRCMSI** is an **enhanced whole-slide image (WSI) classification framework** that retains the core architecture of EXAONE Path 1.5 while upgrading its internals for greater efficiency and richer multimodal integration.-->
|
15 |
+
**EXAONE Path MSI** is an **enhanced whole-slide image (WSI) classification framework** that retains the core architecture of EXAONE Path while upgrading its internals for greater efficiency and richer multimodal integration.
|
16 |
|
17 |
The pipeline still unfolds in two stages:
|
18 |
|
19 |
+
1. **Patch-wise feature extraction** – Each WSI is tiled into 256 × 256 px patches, which are embedded into 768-dimensional vectors using the frozen **[EXAONE Path](https://huggingface.co/LGAI-EXAONE/EXAONEPath)** encoder.
|
20 |
2. **Slide-level aggregation** – The patch embeddings are aggregated using a Vision Transformer, producing a unified slide-level representation that a lightweight classification head transforms into task-specific probabilities.
|
21 |
|
22 |
---
|
|
|
70 |
|
71 |
### Model Performance Comparison
|
72 |
|
73 |
+
| Metric (AUC) / Task | Titan (Conch v1.5 + iBot, image-text) | PRISM (virchow + perceiver, image-text) | CHIEF (CTransPath + CLAM, image-text, WSI-contrastive) | Prov-GigaPath (GigaPath + LongNet, image-only, mask-prediction) | UNI2-h + CLAM (image-only) | EXAONE Path MSI |
|
74 |
+
|------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|---------------------------|------------------------|
|
75 |
+
| **CRC-MSI** | 0.9370 | 0.9432 | 0.9273 | 0.9541 | <u>0.9808</u> | **0.9844** |
|
76 |
+
<!--| LUAD-TMB (cutoff 10) | 0.6901 | 0.6445 | 0.6501 | 0.6744 | 0.6686 | 0.6846 | |
|
77 |
+
| LUAD-EGFR-mut | 0.8197 | 0.8152 | 0.7691 | 0.7623 | 0.8577 | 0.7607 | |
|
78 |
+
| LUAD-KRAS-mut | 0.5405 | 0.6299 | 0.4676 | 0.5110 | 0.4690 | 0.5480 | |
|
79 |
+
| BRCA-ER | 0.9343 | 0.8998 | 0.9115 | 0.9186 | 0.9454 | 0.9096 | |
|
80 |
+
| BRCA-PR | 0.8804 | 0.8613 | 0.8470 | 0.8595 | 0.8770 | 0.8215 | |
|
81 |
+
| BRCA-HER2 | 0.8046 | 0.8154 | 0.7822 | 0.7891 | 0.8322 | 0.7811 | |
|
82 |
+
| BRCA-TP53 | 0.7879 | 0.8415 | 0.7879 | 0.7388 | 0.8080 | 0.6607 | |
|
83 |
+
| BRCA-PIK3CA | 0.7577 | 0.8929 | 0.7015 | 0.7347 | 0.8571 | 0.7066 | |
|
84 |
+
| RCC-PBRM1 | 0.6383 | 0.5570 | 0.5129 | 0.5270 | 0.5011 | 0.4445 | |
|
85 |
+
| RCC-BAP1 | 0.7188 | 0.7690 | 0.7310 | 0.6970 | 0.7160 | 0.7337 | |
|
86 |
+
| COAD-KRAS | 0.7642 | 0.7443 | 0.6989 | 0.8153 | 0.9432 | 0.6790 | |
|
87 |
+
| COAD-TP53 | 0.8889 | 0.8160 | 0.7014 | 0.7118 | 0.7830 | 0.8785 | |
|
88 |
+
| <span style="color:red">**Average**</span> | 0.7817 | 0.7869 | 0.7299 | 0.7457 | <u>0.7876</u> | <span style="color:red">**0.7932**</span> |-->
|