|
from collections import OrderedDict |
|
import math |
|
from typing import Callable, List, Optional, Sequence, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from einops import pack, repeat |
|
|
|
from .flex_attn import Flex_Attention |
|
|
|
|
|
|
|
class LayerNormFp32(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(orig_type) |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm (with cast back to input dtype).""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(orig_type) |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
|
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__(self, dim, init_values=1e-5, inplace=False): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
|
|
|
|
class PatchDropout(nn.Module): |
|
""" |
|
https://arxiv.org/abs/2212.00794 |
|
""" |
|
|
|
def __init__(self, prob, exclude_first_token=True): |
|
super().__init__() |
|
assert 0 <= prob < 1. |
|
self.prob = prob |
|
self.exclude_first_token = exclude_first_token |
|
|
|
def forward(self, x): |
|
if not self.training or self.prob == 0.: |
|
return x |
|
|
|
if self.exclude_first_token: |
|
cls_tokens, x = x[:, :1], x[:, 1:] |
|
else: |
|
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) |
|
|
|
batch = x.size()[0] |
|
num_tokens = x.size()[1] |
|
|
|
batch_indices = torch.arange(batch) |
|
batch_indices = batch_indices[..., None] |
|
|
|
keep_prob = 1 - self.prob |
|
num_patches_keep = max(1, int(num_tokens * keep_prob)) |
|
|
|
rand = torch.randn(batch, num_tokens) |
|
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices |
|
|
|
x = x[batch_indices, patch_indices_keep] |
|
|
|
if self.exclude_first_token: |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = True, |
|
scaled_cosine: bool = True, |
|
scale_heads: bool = False, |
|
logit_scale_max: float = math.log(1. / 0.01), |
|
batch_first: bool = True, |
|
attn_drop: float = 0., |
|
proj_drop: float = 0. |
|
): |
|
super().__init__() |
|
self.scaled_cosine = scaled_cosine |
|
self.scale_heads = scale_heads |
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim ** -0.5 |
|
self.logit_scale_max = logit_scale_max |
|
self.batch_first = batch_first |
|
self.use_fsdpa = hasattr(nn.functional, 'scaled_dot_product_attention') |
|
|
|
|
|
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) |
|
if qkv_bias: |
|
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) |
|
else: |
|
self.in_proj_bias = None |
|
|
|
if self.scaled_cosine: |
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) |
|
else: |
|
self.logit_scale = None |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
if self.scale_heads: |
|
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) |
|
else: |
|
self.head_scale = None |
|
self.out_proj = nn.Linear(dim, dim) |
|
self.out_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
def forward(self, x, coords, attn_mask: Optional[torch.Tensor] = None): |
|
if self.batch_first: |
|
x = x.transpose(0, 1) |
|
|
|
L, N, C = x.shape |
|
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) |
|
q = q.reshape(L, N * self.num_heads, -1).transpose(0, 1) |
|
k = k.reshape(L, N * self.num_heads, -1).transpose(0, 1) |
|
v = v.reshape(L, N * self.num_heads, -1).transpose(0, 1) |
|
|
|
if attn_mask is not None and attn_mask.dtype == torch.bool: |
|
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) |
|
new_attn_mask.masked_fill_(attn_mask, float("-inf")) |
|
attn_mask = new_attn_mask |
|
|
|
|
|
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) |
|
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() |
|
attn = attn.view(N, self.num_heads, L, L) * logit_scale |
|
|
|
if attn_mask is not None: |
|
attn = attn + attn_mask[:, None, None, :] |
|
attn = attn.view(-1, L, L) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = torch.bmm(attn, v) |
|
|
|
if self.head_scale is not None: |
|
x = x.view(N, self.num_heads, L, C) * self.head_scale |
|
x = x.view(-1, L, C) |
|
|
|
x = x.transpose(0, 1).reshape(L, N, C) |
|
|
|
if self.batch_first: |
|
x = x.transpose(0, 1) |
|
|
|
x = self.out_proj(x) |
|
x = self.out_drop(x) |
|
return x |
|
|
|
|
|
class AttentionalPooler(nn.Module): |
|
def __init__( |
|
self, |
|
d_model: int, |
|
context_dim: int, |
|
n_head: int = 8, |
|
n_queries: int = 256, |
|
norm_layer: Callable = LayerNorm, |
|
): |
|
super().__init__() |
|
self.query = nn.Parameter(torch.randn(n_queries, d_model)) |
|
self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim, batch_first=True) |
|
self.ln_q = norm_layer(d_model) |
|
self.ln_k = norm_layer(context_dim) |
|
|
|
def forward(self, x: torch.Tensor): |
|
N = x.shape[0] |
|
x = self.ln_k(x) |
|
q = self.ln_q(self.query) |
|
out = self.attn(q.unsqueeze(0).expand(N, -1, -1), x, x, need_weights=False)[0] |
|
return out |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
d_model: int, |
|
n_head: int, |
|
mlp_ratio: float = 4.0, |
|
ls_init_value: float = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
is_cross_attention: bool = False, |
|
batch_first: bool = True, |
|
use_flex:bool = False, |
|
dropout:float = 0.2, |
|
use_rel_bias:bool = True, |
|
): |
|
super().__init__() |
|
|
|
self.ln_1 = norm_layer(d_model) |
|
|
|
if use_flex: |
|
print("Flex_Attention!") |
|
self.attn = Flex_Attention(dim = d_model, num_heads=n_head, proj_drop=dropout, use_rel_bias=use_rel_bias) |
|
else: |
|
self.attn = Attention(dim = d_model, num_heads=n_head, batch_first=batch_first, proj_drop=dropout, attn_drop=dropout) |
|
|
|
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() |
|
if is_cross_attention: |
|
self.ln_1_kv = norm_layer(d_model) |
|
|
|
self.ln_2 = norm_layer(d_model) |
|
mlp_width = int(d_model * mlp_ratio) |
|
|
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, mlp_width)), |
|
("gelu", act_layer()), |
|
("c_proj", nn.Linear(mlp_width, d_model)) |
|
])) |
|
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() |
|
|
|
def attention( |
|
self, |
|
q_x: torch.Tensor, |
|
k_x: Optional[torch.Tensor] = None, |
|
v_x: Optional[torch.Tensor] = None, |
|
coords = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
key_padding_mask=None, |
|
): |
|
k_x = k_x if k_x is not None else q_x |
|
v_x = v_x if v_x is not None else q_x |
|
|
|
attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None |
|
|
|
return self.attn( |
|
q_x, coords=coords, attn_mask=key_padding_mask |
|
) |
|
|
|
def forward( |
|
self, |
|
q_x: torch.Tensor, |
|
k_x: Optional[torch.Tensor] = None, |
|
v_x: Optional[torch.Tensor] = None, |
|
coords = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
key_padding_mask = None, |
|
): |
|
k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None |
|
v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None |
|
x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, coords=coords, attn_mask=attn_mask, key_padding_mask=key_padding_mask)) |
|
x = x + self.ls_2(self.mlp(self.ln_2(x))) |
|
return x |
|
|
|
|
|
def _expand_token(token, batch_size: int): |
|
return token.view(1, 1, -1).expand(batch_size, -1, -1) |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
mlp_ratio: float = 4.0, |
|
ls_init_value: float = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
batch_first: bool = True, |
|
use_flex: bool = False, |
|
dropout: float = False, |
|
use_rel_bias: bool = True, |
|
): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.batch_first = batch_first |
|
self.grad_checkpointing = False |
|
|
|
self.resblocks = nn.ModuleList([ |
|
ResidualAttentionBlock( |
|
width, |
|
heads, |
|
mlp_ratio, |
|
ls_init_value=ls_init_value, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
batch_first=batch_first, |
|
use_flex=use_flex, |
|
dropout=dropout, |
|
use_rel_bias=use_rel_bias |
|
) |
|
for _ in range(layers) |
|
]) |
|
|
|
def get_cast_dtype(self) -> torch.dtype: |
|
if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'): |
|
return self.resblocks[0].mlp.c_fc.int8_original_dtype |
|
return self.resblocks[0].mlp.c_fc.weight.dtype |
|
|
|
def forward(self, x: torch.Tensor, coords = None, attn_mask: Optional[torch.Tensor] = None, key_padding_mask=None): |
|
if not self.batch_first: |
|
x = x.transpose(0, 1).contiguous() |
|
for r in self.resblocks: |
|
x = r(x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, coords=coords) |
|
if not self.batch_first: |
|
x = x.transpose(0, 1).contiguous() |
|
return x |
|
|
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
mlp_ratio: float, |
|
ls_init_value: float = None, |
|
output_dim: int = 512, |
|
patch_dropout: float = 0., |
|
no_ln_pre: bool = False, |
|
pool_type: str = 'tok', |
|
final_ln_after_pool: bool = False, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
output_tokens: bool = False, |
|
img_embed: bool = False, |
|
use_flex:bool = False, |
|
dropout:float = 0.1, |
|
num_registers: int = 0, |
|
use_rel_bias: bool = True, |
|
): |
|
super().__init__() |
|
assert pool_type in ('tok', 'avg', 'none') |
|
self.output_tokens = output_tokens |
|
|
|
self.final_ln_after_pool = final_ln_after_pool |
|
self.output_dim = output_dim |
|
self.img_embed = img_embed |
|
self.num_registers = num_registers |
|
self.positional_embedding = None |
|
self.pre_linear = nn.Linear(768, width) |
|
|
|
|
|
if num_registers>0: |
|
self.register_token = nn.Parameter(torch.empty(num_registers, width)) |
|
nn.init.normal_(self.register_token, std=0.02) |
|
|
|
|
|
self.positional_embedding = None |
|
|
|
|
|
self.positional_embedding = None |
|
|
|
|
|
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() |
|
|
|
self.ln_pre = nn.Identity() if no_ln_pre else norm_layer(width) |
|
self.transformer = Transformer( |
|
width, |
|
layers, |
|
heads, |
|
mlp_ratio, |
|
ls_init_value=ls_init_value, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
use_flex=use_flex, |
|
dropout=dropout, |
|
use_rel_bias=use_rel_bias, |
|
) |
|
|
|
pool_dim = width |
|
self.pool_type = pool_type |
|
|
|
self.ln_post = norm_layer(pool_dim) |
|
|
|
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if self.pool_type == 'avg': |
|
pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:] |
|
elif self.pool_type == 'tok': |
|
pooled, tokens = x[:, 0], x[:, 1:] |
|
else: |
|
pooled = tokens = x |
|
|
|
return pooled, tokens |
|
|
|
def forward(self, x: torch.Tensor, coords=None, mask=None, key_padding_mask=None): |
|
x = self.pre_linear(x) |
|
|
|
if self.num_registers > 0: |
|
r = repeat(self.register_token, 'n d -> b n d', b=x.size(0)) |
|
x, ps = pack([x, r], 'b * d') |
|
|
|
x = self.patch_dropout(x) |
|
x = self.ln_pre(x) |
|
x = self.transformer(x, coords, mask, key_padding_mask=key_padding_mask) |
|
|
|
if self.final_ln_after_pool: |
|
pooled, tokens = self._global_pool(x) |
|
pooled = self.ln_post(pooled) |
|
else: |
|
x = self.ln_post(x) |
|
pooled, tokens = self._global_pool(x) |
|
|
|
return pooled |
|
|
|
|