2ms's picture
init commit
03ae676
from collections import OrderedDict
import math
from typing import Callable, List, Optional, Sequence, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F
from einops import pack, repeat
from .flex_attn import Flex_Attention
class LayerNormFp32(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
class QuickGELU(nn.Module):
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class PatchDropout(nn.Module):
"""
https://arxiv.org/abs/2212.00794
"""
def __init__(self, prob, exclude_first_token=True):
super().__init__()
assert 0 <= prob < 1.
self.prob = prob
self.exclude_first_token = exclude_first_token # exclude CLS token
def forward(self, x):
if not self.training or self.prob == 0.:
return x
if self.exclude_first_token:
cls_tokens, x = x[:, :1], x[:, 1:]
else:
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
batch = x.size()[0]
num_tokens = x.size()[1]
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
keep_prob = 1 - self.prob
num_patches_keep = max(1, int(num_tokens * keep_prob))
rand = torch.randn(batch, num_tokens)
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
x = x[batch_indices, patch_indices_keep]
if self.exclude_first_token:
x = torch.cat((cls_tokens, x), dim=1)
return x
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = True,
scaled_cosine: bool = True,
scale_heads: bool = False,
logit_scale_max: float = math.log(1. / 0.01),
batch_first: bool = True,
attn_drop: float = 0.,
proj_drop: float = 0.
):
super().__init__()
self.scaled_cosine = scaled_cosine
self.scale_heads = scale_heads
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.logit_scale_max = logit_scale_max
self.batch_first = batch_first
self.use_fsdpa = hasattr(nn.functional, 'scaled_dot_product_attention')
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
if qkv_bias:
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
else:
self.in_proj_bias = None
if self.scaled_cosine:
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
else:
self.logit_scale = None
self.attn_drop = nn.Dropout(attn_drop)
if self.scale_heads:
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
else:
self.head_scale = None
self.out_proj = nn.Linear(dim, dim)
self.out_drop = nn.Dropout(proj_drop)
def forward(self, x, coords, attn_mask: Optional[torch.Tensor] = None):
if self.batch_first:
x = x.transpose(0, 1)
L, N, C = x.shape
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
q = q.reshape(L, N * self.num_heads, -1).transpose(0, 1)
k = k.reshape(L, N * self.num_heads, -1).transpose(0, 1)
v = v.reshape(L, N * self.num_heads, -1).transpose(0, 1)
if attn_mask is not None and attn_mask.dtype == torch.bool:
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
attn_mask = new_attn_mask
# if self.logit_scale is not None:
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
attn = attn.view(N, self.num_heads, L, L) * logit_scale
if attn_mask is not None:
attn = attn + attn_mask[:, None, None, :]
attn = attn.view(-1, L, L)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = torch.bmm(attn, v)
if self.head_scale is not None:
x = x.view(N, self.num_heads, L, C) * self.head_scale
x = x.view(-1, L, C)
x = x.transpose(0, 1).reshape(L, N, C)
if self.batch_first:
x = x.transpose(0, 1)
x = self.out_proj(x)
x = self.out_drop(x)
return x
class AttentionalPooler(nn.Module):
def __init__(
self,
d_model: int,
context_dim: int,
n_head: int = 8,
n_queries: int = 256,
norm_layer: Callable = LayerNorm,
):
super().__init__()
self.query = nn.Parameter(torch.randn(n_queries, d_model))
self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim, batch_first=True)
self.ln_q = norm_layer(d_model)
self.ln_k = norm_layer(context_dim)
def forward(self, x: torch.Tensor):
N = x.shape[0]
x = self.ln_k(x)
q = self.ln_q(self.query)
out = self.attn(q.unsqueeze(0).expand(N, -1, -1), x, x, need_weights=False)[0]
return out
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
is_cross_attention: bool = False,
batch_first: bool = True,
use_flex:bool = False,
dropout:float = 0.2,
use_rel_bias:bool = True,
):
super().__init__()
self.ln_1 = norm_layer(d_model)
if use_flex:
print("Flex_Attention!")
self.attn = Flex_Attention(dim = d_model, num_heads=n_head, proj_drop=dropout, use_rel_bias=use_rel_bias)
else:
self.attn = Attention(dim = d_model, num_heads=n_head, batch_first=batch_first, proj_drop=dropout, attn_drop=dropout)
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
if is_cross_attention:
self.ln_1_kv = norm_layer(d_model)
self.ln_2 = norm_layer(d_model)
mlp_width = int(d_model * mlp_ratio)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, mlp_width)),
("gelu", act_layer()),
("c_proj", nn.Linear(mlp_width, d_model))
]))
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
def attention(
self,
q_x: torch.Tensor,
k_x: Optional[torch.Tensor] = None,
v_x: Optional[torch.Tensor] = None,
coords = None,
attn_mask: Optional[torch.Tensor] = None,
key_padding_mask=None,
):
k_x = k_x if k_x is not None else q_x
v_x = v_x if v_x is not None else q_x
attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
return self.attn(
q_x, coords=coords, attn_mask=key_padding_mask
)
def forward(
self,
q_x: torch.Tensor,
k_x: Optional[torch.Tensor] = None,
v_x: Optional[torch.Tensor] = None,
coords = None,
attn_mask: Optional[torch.Tensor] = None,
key_padding_mask = None,
):
k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, coords=coords, attn_mask=attn_mask, key_padding_mask=key_padding_mask))
x = x + self.ls_2(self.mlp(self.ln_2(x)))
return x
def _expand_token(token, batch_size: int):
return token.view(1, 1, -1).expand(batch_size, -1, -1)
class Transformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
batch_first: bool = True,
use_flex: bool = False,
dropout: float = False,
use_rel_bias: bool = True,
):
super().__init__()
self.width = width
self.layers = layers
self.batch_first = batch_first
self.grad_checkpointing = False
self.resblocks = nn.ModuleList([
ResidualAttentionBlock(
width,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
batch_first=batch_first,
use_flex=use_flex,
dropout=dropout,
use_rel_bias=use_rel_bias
)
for _ in range(layers)
])
def get_cast_dtype(self) -> torch.dtype:
if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'):
return self.resblocks[0].mlp.c_fc.int8_original_dtype
return self.resblocks[0].mlp.c_fc.weight.dtype
def forward(self, x: torch.Tensor, coords = None, attn_mask: Optional[torch.Tensor] = None, key_padding_mask=None):
if not self.batch_first:
x = x.transpose(0, 1).contiguous() # NLD -> LND
for r in self.resblocks:
x = r(x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, coords=coords)
if not self.batch_first:
x = x.transpose(0, 1).contiguous() # LND -> NLD
return x
class VisionTransformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
mlp_ratio: float,
ls_init_value: float = None,
output_dim: int = 512,
patch_dropout: float = 0.,
no_ln_pre: bool = False,
pool_type: str = 'tok',
final_ln_after_pool: bool = False,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
output_tokens: bool = False,
img_embed: bool = False,
use_flex:bool = False,
dropout:float = 0.1,
num_registers: int = 0,
use_rel_bias: bool = True,
):
super().__init__()
assert pool_type in ('tok', 'avg', 'none')
self.output_tokens = output_tokens
self.final_ln_after_pool = final_ln_after_pool # currently ignored w/ attn pool enabled
self.output_dim = output_dim
self.img_embed = img_embed
self.num_registers = num_registers
self.positional_embedding = None
self.pre_linear = nn.Linear(768, width)
if num_registers>0:
self.register_token = nn.Parameter(torch.empty(num_registers, width))
nn.init.normal_(self.register_token, std=0.02)
self.positional_embedding = None
self.positional_embedding = None
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
self.ln_pre = nn.Identity() if no_ln_pre else norm_layer(width)
self.transformer = Transformer(
width,
layers,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
use_flex=use_flex,
dropout=dropout,
use_rel_bias=use_rel_bias,
)
pool_dim = width
self.pool_type = pool_type
self.ln_post = norm_layer(pool_dim)
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if self.pool_type == 'avg':
pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:]
elif self.pool_type == 'tok':
pooled, tokens = x[:, 0], x[:, 1:]
else:
pooled = tokens = x
return pooled, tokens
def forward(self, x: torch.Tensor, coords=None, mask=None, key_padding_mask=None):
x = self.pre_linear(x)
if self.num_registers > 0:
r = repeat(self.register_token, 'n d -> b n d', b=x.size(0))
x, ps = pack([x, r], 'b * d')
x = self.patch_dropout(x)
x = self.ln_pre(x)
x = self.transformer(x, coords, mask, key_padding_mask=key_padding_mask)
if self.final_ln_after_pool:
pooled, tokens = self._global_pool(x)
pooled = self.ln_post(pooled)
else:
x = self.ln_post(x)
pooled, tokens = self._global_pool(x)
return pooled