|
import argparse |
|
import torch |
|
import os |
|
|
|
from models.exaonepath import EXAONEPathV1p5Downstream |
|
from utils.constants import CLASS_NAMES |
|
from tokens import HF_TOKEN |
|
|
|
|
|
def infer(model, input_file): |
|
print("Processing", input_file, "...") |
|
probs = model(input_file) |
|
result_str = "Result -- " + " / ".join( |
|
[f"{name}: {probs[i].item():.4f}" for i, name in enumerate(CLASS_NAMES)] |
|
) |
|
print(result_str + "\n") |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description="Inference") |
|
parser.add_argument('--svs_path', type=str, default='./samples/wsis/1/1.svs', help="Path to the .svs file") |
|
parser.add_argument('--svs_dir', type=str, default='./samples_CRC', help="") |
|
|
|
args = parser.parse_args() |
|
|
|
hf_token = HF_TOKEN |
|
|
|
model = EXAONEPathV1p5Downstream(num_sampled_patch=16384) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.load_state_dict(torch.load('./pytorch_model.bin')) |
|
model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) |
|
model.eval() |
|
model.feature_extractor = torch.compile(model.feature_extractor) |
|
model.agg_model = torch.compile(model.agg_model) |
|
|
|
for svs_name in os.listdir(args.svs_dir): |
|
infer(model, os.path.join(args.svs_dir, svs_name)) |
|
|
|
|