File size: 7,668 Bytes
03ae676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
from dataclasses import dataclass
from functools import partial

from models.transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer


# @dataclass
# class VisionCfg:
#     layers: Union[Tuple[int, int, int, int], int] = 6
#     width: int = 512
#     head_width: int = 64
#     mlp_ratio: float = 4.0

#     ls_init_value: Optional[float] = None  # layer scale initial value
#     patch_dropout: float = 0.  # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
#     no_ln_pre: bool = False  # disable pre transformer LayerNorm
#     pool_type: str = 'none'
#     final_ln_after_pool: bool = True  # apply final LayerNorm after pooling
#     output_tokens: bool = False
#     act_kwargs: Optional[dict] = None
#     norm_kwargs: Optional[dict] = None

@dataclass
class CLIPVisionCfg:
    layers: Union[Tuple[int, int, int, int], int] = 6
    width: int = 512
    head_width: int = 64
    mlp_ratio: float = 4.0
    patch_size: int = 16
    image_size: Union[Tuple[int, int], int] = 224

    ls_init_value: Optional[float] = None  # layer scale initial value
    patch_dropout: float = 0.  # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
    attentional_pool: bool = False  # whether to use attentional pooler in the last embedding layer (overrides pool_type)
    attn_pooler_queries: int = 256  # n_queries for attentional pooler
    attn_pooler_heads: int = 8  # n heads for attentional_pooling
    no_ln_pre: bool = False  # disable pre transformer LayerNorm
    pos_embed_type: str = 'none'
    final_ln_after_pool: bool = True  # apply final LayerNorm after pooling
    pool_type: str = 'none'
    output_tokens: bool = False
    act_kwargs: Optional[dict] = None
    norm_kwargs: Optional[dict] = None

    timm_model_name: Optional[str] = None  # a valid model name overrides layers, width, patch_size
    timm_model_pretrained: bool = False  # use (imagenet) pretrained weights for named model
    timm_pool: str = 'avg'  # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
    timm_proj: str = 'linear'  # linear projection for timm model output ('linear', 'mlp', '')
    timm_proj_bias: bool = False  # enable bias final projection
    timm_drop: float = 0.  # head dropout
    timm_drop_path: Optional[float] = None  # backbone stochastic depth
    img_embed: bool = False
    cls_embed: bool = False
    projection = False
    use_flex = True


def get_cast_dtype(precision: str):
    cast_dtype = None
    if precision == 'bf16':
        cast_dtype = torch.bfloat16
    elif precision == 'fp16':
        cast_dtype = torch.float16
    return cast_dtype


def get_input_dtype(precision: str):
    input_dtype = None
    if precision in ('bf16', 'pure_bf16'):
        input_dtype = torch.bfloat16
    elif precision in ('fp16', 'pure_fp16'):
        input_dtype = torch.float16
    return input_dtype


def _build_vision_tower(
        embed_dim: int,
        vision_cfg: CLIPVisionCfg,
        quick_gelu: bool = False,
        cast_dtype: Optional[torch.dtype] = None,
        dropout: float = 0.1,
        num_registers: int = 0,
):
    if isinstance(vision_cfg, dict):
        vision_cfg = CLIPVisionCfg(**vision_cfg)

    act_layer = QuickGELU if quick_gelu else nn.GELU

    vision_heads = vision_cfg.width // vision_cfg.head_width
    norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
    if vision_cfg.norm_kwargs:
        norm_layer = partial(norm_layer, **vision_cfg.norm_kwargs)
    if vision_cfg.act_kwargs is not None:
        act_layer = partial(act_layer, **vision_cfg.act_kwargs)

    visual = VisionTransformer(
        width=vision_cfg.width,
        layers=vision_cfg.layers,
        heads=vision_heads,
        mlp_ratio=vision_cfg.mlp_ratio,
        ls_init_value=vision_cfg.ls_init_value,
        output_dim=embed_dim,
        patch_dropout=vision_cfg.patch_dropout,
        no_ln_pre=vision_cfg.no_ln_pre,
        pool_type=vision_cfg.pool_type,
        final_ln_after_pool=vision_cfg.final_ln_after_pool,
        act_layer=act_layer,
        norm_layer=norm_layer,
        output_tokens=vision_cfg.output_tokens,
        img_embed = vision_cfg.img_embed,
        use_flex = True,
        dropout = dropout,
        num_registers = num_registers,
        use_rel_bias =True,
    )

    return visual


class MixedOmicsModel(nn.Module):
    def __init__(
            self,
            embed_dim: int,
            vision_cfg: CLIPVisionCfg,
            quick_gelu: bool = False,
            cast_dtype: Optional[torch.dtype] = None,
            drop_rate: float = 0.25,
            num_registers: int = 0,
            *args,
            **kwargs,
            ):
        super().__init__()

        self.drop_prob = drop_rate
        self.num_registers = num_registers

        vision_cfg.cls_embed = False
        
        self.visual = _build_vision_tower(embed_dim,
                                        vision_cfg, 
                                        quick_gelu, 
                                        cast_dtype, 
                                        dropout=drop_rate, 
                                        num_registers=0,
                                        )
        
        self.image_proj = nn.Linear(embed_dim, embed_dim)
        self.image_proj.apply(self.init_weights)

        self.ln_post = LayerNorm(embed_dim)
            


    def init_weights(self, module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    def _check_tensor(self, tensor, name):
        print(name, " : ", tensor.shape)
        if torch.isnan(tensor).any():
            print(tensor.shape)
            print(f"Tensor {name} contains NaN values.")
        if torch.isinf(tensor).any():
            print(tensor.shape)
            print(f"Tensor {name} contains Inf values.")
    
    def forward(
        self,
        image,
        coords=None,
        im_mask=None,
        *args,
        **kwargs,
    ):
          
        ## image embedding
        image_embeds = self.visual(image.contiguous(), coords=coords.contiguous(), key_padding_mask=None if im_mask is None else (~im_mask.bool()).contiguous())
        image_embeds = self.ln_post(image_embeds)
        
        if im_mask is not None:
            mask = im_mask.unsqueeze(-1).contiguous()
            masked_embeds = image_embeds * mask
            sum_embeds = masked_embeds.sum(dim=1)
            valid_counts = mask.sum(dim=1).clamp(min=1)   # [N, 1]
            mean_embeds = sum_embeds / valid_counts       # [N, dim]

        else:
            mean_embeds = image_embeds.mean(-2)

        image_embeds_final = self.image_proj(mean_embeds)
        
        return image_embeds_final, image_embeds, mean_embeds



def make_model(
    embed_dim=768,
    droprate=0.1,
    num_registers=0,
    depth=4,
):  
    vCfg = CLIPVisionCfg
    vCfg.width = embed_dim
    vCfg.layers = depth

    model = MixedOmicsModel(
        embed_dim=embed_dim,
        vision_cfg=vCfg,
        drop_rate=droprate,
        num_registers=num_registers,
        )
    
    return model