deepanshupillm commited on
Commit
deff005
·
verified ·
1 Parent(s): 391a8ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -109
README.md CHANGED
@@ -1,141 +1,126 @@
1
- ---
2
- license: apache-2.0
3
- language:
4
- - en
5
- base_model:
6
- - meta-llama/Llama-3.1-8B-Instruct
7
- pipeline_tag: text-generation
8
- tags:
9
- - llama
10
- - education
11
- - transformers
12
- - fine-tuning
13
- - LoRA
14
- - PEFT
15
- - RSLoRA
16
- - quantized
17
- ---
18
- ---
19
- **model_name: generic_slm**
20
 
21
  ## Overview
22
 
23
- The **generic_slm** is a fine-tuned version of the **Meta-Llama-3.1-8B-bnb-4bit** model, optimized to generate high-quality educational content. This model is designed for tasks such as summarization, question answering, and personalized study material creation. By leveraging techniques like **LoRA**, **PEFT**, and **RSLoRA**, the model delivers contextually accurate and engaging outputs tailored for students and educators.
 
 
 
 
24
 
25
  ## Key Features
26
- - **Model Architecture**: Transformer-based, quantized to 4-bit for efficiency.
27
- - **Training Optimizations**: Fine-tuned using LoRA, PEFT, and RSLoRA.
28
- - **Target Audience**: Students, educators, and developers of educational tools.
29
- - **Applications**: Summarization, curriculum-aligned Q&A, and study guide creation.
30
-
31
- ## Tags
32
-
33
- - transformers
34
- - llama
35
- - education
36
- - fine-tuning
37
- - LoRA
38
- - PEFT
39
- - RSLoRA
40
- - quantized
41
-
42
- ## Uses
43
-
44
- ### Direct Use
45
- - Summarizing chapters or concepts
46
- - Answering curriculum-aligned questions
47
- - Generating practice questions and explanations
48
- - Recommending study materials
49
-
50
- ### Downstream Use
51
- - Interactive learning tools
52
- - Educational chatbots
53
- - Personalized study guides
54
- - Automated assessment materials
55
-
56
- ### Out of Scope
57
- - Legal or financial decision-making
58
- - Generating non-educational content
59
- - Applications requiring high precision in non-educational contexts
60
 
61
  ## Training Details
62
 
63
  ### Dataset
64
- Proprietary dataset by 169Pi
 
 
 
 
65
 
66
- ### Preprocessing Steps
67
- - Removed duplicates
68
- - Cleaned noisy and irrelevant data
69
- - Normalized text for consistency
70
-
71
- ### Parameter Size
72
- 4.65 billion (after quantization to 4-bit)
73
 
74
  ### Hyperparameters
75
- - **learning_rate**: 5e-5
76
- - **lr_scheduler_type**: cosine
77
- - **batch_size_per_device**: 32
78
- - **gradient_accumulation_steps**: 4
79
- - **num_epochs**: 3
80
- - **fp16**: True
81
- - **bf16**: True
82
- - **optimizer**: adamw_8bit
83
- - **weight_decay**: 0.05
84
- - **warmup_steps**: 1000
85
- - **logging_steps**: 1000
86
- - **evaluation_strategy**: steps
87
- - **eval_steps**: 1000
88
- - **save_strategy**: steps
89
- - **save_steps**: 1000
90
-
91
- ## Architecture
92
-
93
- ### Base Model
94
- Meta-Llama-3.1-8B
95
-
96
- ### Quantization
97
- 4-bit
98
-
99
- ### Techniques
100
- - LoRA
101
- - PEFT
102
- - RSLoRA
103
-
104
- ## Bias, Risks, and Limitations
 
 
 
105
 
106
  ### Known Biases
107
- Potential biases in educational content sources, including cultural or linguistic preferences.
108
 
109
  ### Risks
110
- Model may generate incorrect or general responses for ambiguous queries.
 
111
 
112
  ### Recommendations
113
- Use cautiously in critical contexts. Regularly evaluate outputs for accuracy and bias.
114
-
115
- ## Technical Specifications
116
-
117
- ### Model Architecture
118
- Transformer-based architecture with multi-head self-attention, enhanced using LoRA, PEFT, and RSLoRA. Optimized for educational tasks.
119
 
120
- ### Objective
121
- Generate high-quality educational content, including summarization, question-answering, and study material generation.
122
 
123
  ## Evaluation
124
 
125
  ### Metrics
126
- - **Primary**: Loss during training
127
- - **Secondary**: Accuracy and relevance through manual evaluation
 
 
 
128
 
129
- ### Results
130
- Achieved low validation loss during training, demonstrating generalization capability.
131
 
132
  ## Environmental Impact
133
 
134
- - **Hardware**: NVIDIA A100
135
- - **Training Duration**: 26 hours
 
 
 
136
 
137
  ## Citation
138
 
 
 
139
  ```bibtex
140
  @misc{169Pi_generic_slm,
141
  title={169Pi/generic_slm: Fine-Tuned Educational Model},
@@ -146,8 +131,12 @@ Achieved low validation loss during training, demonstrating generalization capab
146
  }
147
  ```
148
 
 
149
 
150
  ## Contact
151
 
 
 
152
  - **Developer**: 169Pi AI
153
- - **Email**: [[email protected]](mailto:[email protected])
 
 
1
+ # 169Pi/generic_slm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  ## Overview
4
 
5
+ The **169Pi/generic_slm** is a state-of-the-art fine-tuned model derived from **Meta-Llama-3.1-8B-bnb-4bit**, purpose-built to deliver high-quality educational content. Designed to meet the needs of students and educators, this model leverages advanced techniques, including **LoRA**, **PEFT**, and **RSLoRA**, to generate accurate, contextually relevant, and engaging outputs.
6
+
7
+ This model supports a wide range of educational applications, from summarization to personalized study guide generation, and has been optimized for efficiency with 4-bit quantization.
8
+
9
+ ---
10
 
11
  ## Key Features
12
+ - **Base Model**: Meta-Llama-3.1-8B, optimized with LoRA, PEFT, and RSLoRA techniques.
13
+ - **Parameter Efficiency**: Quantized to 4-bit for improved performance.
14
+ - **Target Audience**: Students, educators, and developers of educational technology.
15
+ - **Applications**: Summarization, curriculum-aligned Q&A, practice question generation, and more.
16
+
17
+ ---
18
+
19
+ ## Use Cases
20
+
21
+ ### Direct Applications
22
+ - **Concept Summarization**: Generate concise and accurate summaries of academic material.
23
+ - **Curriculum-Aligned Q&A**: Deliver precise answers to subject-specific questions.
24
+ - **Practice Material Creation**: Develop quizzes, questions, and explanations.
25
+ - **Study Resource Recommendations**: Suggest tailored learning resources.
26
+
27
+ ### Downstream Applications
28
+ - **Interactive Learning Platforms**: Enhance user engagement with dynamic educational content.
29
+ - **Educational Chatbots**: Provide on-demand academic assistance.
30
+ - **Personalized Study Guides**: Create customized study materials for individual learners.
31
+ - **Automated Assessment Tools**: Generate and evaluate educational content programmatically.
32
+
33
+ ### Out-of-Scope Applications
34
+ - **Legal or Financial Decision-Making**: This model is not suited for applications outside educational contexts.
35
+ - **Non-Educational Content Generation**: Avoid using the model for tasks unrelated to education.
36
+ - **High-Precision Non-Educational Use Cases**: The model may not deliver the required precision outside its intended domain.
37
+
38
+ ---
 
 
 
 
 
 
 
39
 
40
  ## Training Details
41
 
42
  ### Dataset
43
+ - **Source**: Proprietary educational dataset curated by 169Pi.
44
+ - **Preprocessing Steps**:
45
+ - Deduplication of redundant data.
46
+ - Removal of noisy and irrelevant information.
47
+ - Text normalization for enhanced consistency.
48
 
49
+ ### Model Configuration
50
+ - **Parameter Size**: 4.65 billion parameters (quantized to 4-bit).
51
+ - **Hardware Utilized**: NVIDIA A100 GPUs.
52
+ - **Training Duration**: 26 hours.
 
 
 
53
 
54
  ### Hyperparameters
55
+ - **Learning Rate**: `5e-5`
56
+ - **Scheduler**: Cosine
57
+ - **Batch Size**: 32 per device
58
+ - **Gradient Accumulation Steps**: 4
59
+ - **Epochs**: 3
60
+ - **Mixed Precision**: FP16 and BF16
61
+ - **Optimizer**: AdamW (8-bit)
62
+ - **Weight Decay**: 0.05
63
+ - **Warmup Steps**: 1000
64
+ - **Logging Frequency**: Every 1000 steps
65
+ - **Evaluation Strategy**: Per 1000 steps
66
+ - **Model Checkpoints**: Saved every 1000 steps
67
+
68
+ ---
69
+
70
+ ## Technical Specifications
71
+
72
+ - **Base Model**: Meta-Llama-3.1-8B
73
+ - **Quantization**: 4-bit quantization for computational efficiency.
74
+ - **Fine-Tuning Techniques**:
75
+ - **LoRA**: Low-Rank Adaptation for parameter-efficient fine-tuning.
76
+ - **PEFT**: Parameter-Efficient Fine-Tuning.
77
+ - **RSLoRA**: Residual Scaling with LoRA for enhanced generalization.
78
+
79
+ ### Model Objective
80
+ To generate high-quality educational content tailored for diverse academic needs, including:
81
+ - Topic Summarization
82
+ - Question-Answer Generation
83
+ - Personalized Study Material Creation
84
+
85
+ ---
86
+
87
+ ## Biases, Risks, and Limitations
88
 
89
  ### Known Biases
90
+ - The model may reflect cultural or linguistic biases inherent in the training dataset.
91
 
92
  ### Risks
93
+ - Outputs may lack precision for ambiguous or highly specialized queries.
94
+ - Inaccurate responses may occur for tasks outside the educational domain.
95
 
96
  ### Recommendations
97
+ - Use this model cautiously in critical applications, ensuring thorough evaluation of outputs for accuracy and bias.
 
 
 
 
 
98
 
99
+ ---
 
100
 
101
  ## Evaluation
102
 
103
  ### Metrics
104
+ - **Primary Metric**: Training loss.
105
+ - **Secondary Metrics**: Accuracy and relevance through manual evaluation.
106
+
107
+ ### Performance Results
108
+ - Achieved low validation loss, indicating strong generalization capabilities for educational tasks.
109
 
110
+ ---
 
111
 
112
  ## Environmental Impact
113
 
114
+ - **Hardware Utilized**: NVIDIA A100 GPUs.
115
+ - **Training Time**: 26 hours.
116
+ - **Optimizations**: Quantization and efficient fine-tuning methods to reduce resource usage.
117
+
118
+ ---
119
 
120
  ## Citation
121
 
122
+ If you use this model in your work, please cite it as follows:
123
+
124
  ```bibtex
125
  @misc{169Pi_generic_slm,
126
  title={169Pi/generic_slm: Fine-Tuned Educational Model},
 
131
  }
132
  ```
133
 
134
+ ---
135
 
136
  ## Contact
137
 
138
+ For inquiries or technical support, please contact:
139
+
140
  - **Developer**: 169Pi AI
141
+ - **Email**: [[email protected]](mailto:[email protected])
142
+ ```