1038lab commited on
Commit
d4bf135
·
verified ·
1 Parent(s): 09dc7ca

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -0
README.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-to-image
4
+ library_name: diffusers
5
+ base_model:
6
+ - stabilityai/stable-diffusion-2
7
+ ---
8
+
9
+ # SDMatte - SafeTensors Models for Interactive Matting
10
+
11
+ This repository contains SafeTensors versions of the SDMatte models for interactive image matting, optimized for ComfyUI usage.
12
+
13
+ ## About SDMatte
14
+
15
+ **SDMatte: Grafting Diffusion Models for Interactive Matting**
16
+
17
+ SDMatte is a state-of-the-art diffusion-driven interactive matting model that leverages the powerful priors of diffusion models to achieve exceptional performance in extracting fine-grained details, especially in edge regions.
18
+
19
+ ### Key Features
20
+ - **Diffusion-powered**: Utilizes diffusion model priors for superior detail extraction
21
+ - **Interactive matting**: Visual prompt-driven interaction for precise control
22
+ - **Fine-grained details**: Excels at capturing complex edge regions and texture details
23
+ - **Coordinate & opacity awareness**: Enhanced spatial and opacity information processing
24
+
25
+ ## Available Models
26
+
27
+ - **SDMatte.safetensors** - Standard interactive matting model
28
+ - **SDMatte_plus.safetensors** - Enhanced version with improved performance
29
+
30
+ ## Credits and Attribution
31
+
32
+ ### Original Work
33
+ **Authors**: vivoCameraResearch Team
34
+ **Original Repository**: https://huggingface.co/LongfeiHuang/SDMatte
35
+ **Official Code**: https://github.com/vivoCameraResearch/SDMatte
36
+ **Paper**: SDMatte: Grafting Diffusion Models for Interactive Matting
37
+
38
+ ### Abstract
39
+ *Recent interactive matting methods have shown satisfactory performance in capturing the primary regions of objects, but they fall short in extracting fine-grained details in edge regions. Diffusion models trained on billions of image-text pairs, demonstrate exceptional capability in modeling highly complex data distributions and synthesizing realistic texture details, while exhibiting robust text-driven interaction capabilities, making them an attractive solution for interactive matting.*